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Abstract—Autonomous task-oriented robots are increasingly
in demand across various domains; however, few existing
systems address the challenge of autonomous high-resolution
terrestrial scanning for construction and inspection purposes.
This paper presents a task-oriented autonomy framework in-
tegrated with the Spot quadruped robot, enabling autonomous
exploration, mapping, and deployment of a FARO terrestrial
laser scanner. We introduce two novel algorithms for selecting
optimal scanning positions: SCANSAFE (Scanpoint Navigator
using Spatially-Aware Filtering and Evaluation), which pri-
oritizes coverage of open space relative to prior scans, and
PATHSAFE - Path-Aligned Trajectory Heuristic for Scanpoint
Allocation with Filtering and Evaluation method, which places
scan points along the robot’s traveled path. These approaches
are evaluated against two existing strategies: Next-Best-View
Greedy (NBV-Greedy) and Frontier, as well as a manually
guided baseline. Tested in multiple environments, the proposed
algorithms successfully identified valid scanning points. On
average, the SCANSAFE method generated 23.4% fewer scan
points than NBV-Greedy, 44.4% fewer than Frontier, and
2.0% more than the manual baseline. The PATHSAFE method
showed average reductions of 32.8% compared to NBV-Greedy,
51.6% compared to Frontier, and 10.4% compared to the
manual approach. Both methods improved efficiency, reduced
operational overhead, and increased safety in hazardous or
constrained environments.

Index Terms—Robots, Autonomous, Mapping, Terrestrial-
LiDAR-scanning, Exploration

I. INTRODUCTION

Terrestrial LIDAR scanning is widely used in the construc-
tion industry to create accurate 3D representations of physical
environments. This technology, such as FARO scanners [1],
works by projecting laser beams from a stationary device,
often paired with cameras, to generate dense point clouds of
the target area. Traditionally, this scanning process commonly
referred to as dense scanning requires one person to select
each scanning point, operate the FARO scanner mounted on a

Support for this work was provided by Naval Information Warfare
Center Pacific RESTORE lab, the Naval Innovative Science and Engineering
program, and the DoD SMART Scholarship for Service program.

San Diego, CA, USA
0000-0003-3635-2027

University of California San Diego
La Jolla, CA, USA
0000-0002-7465-7502

SpotCore Computer FARO

Touchscreen Velodyne

Speaker

Fig. 1. SPOT equipped with autonomy and FARO scanner.

tripod, and independently reposition the equipment at every
location. Once all desired scan locations are collected, the
user employs FARO SCENE software to construct a high-
resolution 3D map. Each scan had to have at least 40% over-
lap to be automatically registered and merged into a unified
map. If the overlap was insufficient, the user must manually
register the scans to complete the reconstruction. This process
required the operator’s full attention and became increasingly
time-consuming with more than 30 scan positions. This
manual approach is inefficient and can pose significant safety
risks in hazardous environments, such as those involving
explosives, radiation, or disaster zones. Therefore, a robot
capable of autonomously navigating complex environments
and performing these tasks is critical for effective automation.
Mobile robots have become indispensable in a sort of
domains, such as industrial inspection, search and rescue,
scientific exploration, and 3D mapping of complex envi-
ronments. Their ability to navigate cluttered, uneven, or
hazardous spaces makes them well-suited for tasks where



human access may be dangerous or impractical. In partic-
ular, quadruped robots like Boston Dynamics’ Spot [2] offer
robust mechanical stability, agile locomotion, and the payload
capacity needed to carry advanced sensing equipment. These
features make Spot an attractive choice for tasks requiring
high mobility and detailed environmental sensing.

To address these limitations, we are investigating an au-
tonomous system that integrates the Spot quadruped robot,
the FARO Focus scanner, and the Robot Operating System
(ROS) [3]. The system is not intended to replace human
operators, but to serve as a robotic assistant that automates
redundant tasks, or dangerous environment such as power-
plants were human presence could be dangerous and not an
option. Our goal is to enable the system to autonomously
explore indoor environments, generate a 2D navigation map,
and then automate the dense scanning process. We aim
to eliminate manual waypoint planning, decrease total
scanning time, and boost productivity by operating the
system during off-hours, such as nights or weekends.

II. RESEARCH BACKGROUND

In 2003, Philipp Althausl and Henrik I. Christensen
[4] introduced a dynamical systems—based framework for
coordinating robot behaviors in mobile navigation tasks.
In 2005, Boston Dynamics’ BigDog showcased advanced
terrain navigation, marking a milestone in mobile robotics for
rough environments [5]. Amazon’s Kiva Robots, introduced
in 2012, transformed warehouse logistics by automating
inventory movement and management [6]. The Spot robot
by Boston Dynamics, launched in 2015, excelled in versatile
field tasks such as inspection and data collection [7].

The use of robots, especially quadrupeds, for industrial in-
spection has been a topic of great interest in recent years [8]—
[11]. The specific task of terrestrial scanning, both tedious
and repetitive, has been a prime target of robotic application
and automation [12].

In the DARPA Subterranean (SubT) Challenge, the first-
place winner, Team CERBERUS [13], developed a fully
autonomous exploration system integrated onto the ANY-
mal quadruped robot [14]. The objective of the challenge
was to deploy robots capable of autonomously navigating,
mapping confined underground environments, and visually
detecting artifacts within a 1-hour time limit. The coverage
algorithm and planning system employed during the event
relied on real-time sensor feedback to dynamically compute
optimal waypoints for exploration and coverage. In post-
event autonomous testing, the CERBERUS fleet achieved
approximately 30% coverage of the final course. The re-
sulting maps demonstrated high fidelity, with typical outlier
rates between 10% and 14%, although one robot experienced
higher error due to local misalignment. However, when
using a FARO scanner for static mapping, real-time feedback
is unavailable, making it challenging to determine optimal
scanning locations for maximum coverage, often requiring
human intervention.

Papers such as [15] utilize Building Information Models
[16] in order to determine scan-position candidates. They do

this by taking the BIM, converting it into a 2D Occupancy
Grid and then defining a walkable path through the build
which traverses through ideal scan positions. However, this
process relies on having access to this building model,
processing the points offline, and does not incorporate ob-
stacles which are added to the building after the BIM is
produced. This implies that the scanning positions determined
to be optimal from the BIM may not be the actual best
spots once obstacles are considered. This paper [17] requires
the waypoints to be predetermined for the legged robot to
navigate to the FARO scanning locations.

Our focus is on how to use a 2D online map to compute
the best coverage and optimal scanning points for the FARO
scanners without relying on FARO’s feedback sensor. The
core problem relates to the classical Art Gallery problem [18]
and involves optimal viewpoint planning under mobility and
sensor constraints. However, our formulation differs in that
it considers a mobile scanning robot with limited sensor
range and field of view, operating in a 3D environment
with occlusions and accessibility constraints. Rather than
minimizing the number of stationary guards, our goal is to
plan scan poses that maximize coverage while minimizing
traversal cost and redundancy.

One of the algorithms implemented relies on active feed-
back from the sensor to compute the Next View Planner
and Path Planning under Photogrammetric and Kinetic Con-
straints (NVP and PP-PKC) [19] to compute the optimal path
planning for maximum coverages.

The Frontier exploration algorithm identifies the boundary
between known (explored) and unknown (unexplored) areas
in a map, directing the robot to these frontiers in order to
expand coverage. Although it can function with only a 2D
occupancy costmap, it relies on real-time sensor updates to
remain effective, using it on a static map is limited. However,
the method can become unsafe for equipment, as unknown
areas may be near inaccessible zones or dangerously close
to edges or obstacles, posing risks of collision or entrapment
without proper validation or path planning [20].

DeepView is a method for selecting optimal scanning po-
sitions based on previously collected map data and visibility
analysis. However, it relies on training data from similar
environments to learn where the most useful scan points are
likely to be. Its main limitation is that it may not perform
well in unfamiliar or different spaces if it has not seen
similar training examples [21]. The current state-of-the-art
work relies on active sensor feedback and 3D data for view
selection and mapping, which differs from our approach [22].

Our objective was to develop an autonomous robotic
system capable of selecting strategic waypoints to achieve
maximum coverage with minimal redundancy, without re-
lying on real-time sensor feedback. To enable autonomous
FARO scanning, the robot operates in two stages. First, it uses
the Frontier exploration algorithm to map of the environment.
Then, it leverages the map to compute optimal scanning
locations for the FARO scanner.



III. AUTONOMOUS SYSTEM ARCHITECTURE

Our autonomy system for Boston Dynamics Spot robot is
designed as a modular layered architecture. The following
hardware components were used in this work:

o Spot: Quadrupedal mobility Robot

o Velodyne VLP16 LiDAR: A 16-channel LiDAR.

« Intel RealSense Depth Camera (D455): A depth cam-

era utilized as part of the SLAM process.
o FARO Scanner: A precision laser scanner integrated as
a Spot payload to capture high-fidelity 3D scans.

o SpotCore Legacy computer: Intel i5 NUC Lake-U
Core with 16GB RAM as the primary computing re-
source.

Our system builds upon the existing system [23].

e SLAM We integrate Real-Time Appearance-Based
Mapping (RTAB-Map) [24] for Simultaneous Local-
ization and Mapping (SLAM), combining LiDAR and
RGB-D data for robust localization. Key features include
loop closure detection and graph-based optimization.

o Exploration We use frontier exploration [20] with
RTAB-Map to update the occupancy grid and expand 2D
map coverage. The system detects unexplored regions,
generates waypoints using heuristics, and sends them
to MoveBase for navigation. This 2D map serves as
input to our coverage algorithms for selecting FARO
scan points.

o Planning and Control Navigation uses MoveBase’s
global and local planners. While Spot handles low-level
locomotion, our system issues high-level Cartesian path
goals. A custom interface allows users to set exploration
bounds, trigger FARO scans at waypoints, or switch to
teleoperation when needed.

With this autonomy stack, the system autonomously ex-
plores, maps, and executes 3D scanning tasks. We im-
plemented two new coverage algorithms, SCANSAFE and
PATHSAFE, and evaluated them alongside NBV, Frontier,
and Human-Manual methods to assess scan point selection
performance in diverse environments.

IV. METHODS
A. SCANSAFE Method

The SCANSAFE The method estimates the required
number of scan points (SP). n, is upper limit of 30 the
maximum number of SPs that can be executed in real-
world deployments due to battery constraints. The algorithm
gets the 2D costmap from RTAB-Map’s SLAM module and
distributes the SP uniformly across the free-space regions.
Each candidate point must satisfy two constraints:

e Maintain a minimum distance from obstacles to ensure
scanner visibility and safety.
o Maintain a minimum distance from other waypoints to
reduce redundancy and maximize coverage.
Cells in the occupancy grid encode distances to the nearest
obstacles, enabling efficient placement of evenly spaced, non-
overlapping scan points.

Algorithm 1 SCANSAFE Waypoint Generation

Require: Grid-based map M, n = 30

Require: Minimum distance from obstacles dgps, minimum
distance between waypoints dy

Ensure: List of waypoint coordinates SP

1: Convert M to binary: 1 for free space, 0 for obstacles

Compute distance-to-obstacle map D from M

Filter out cells in D where distance < dps

Initialize waypoint list: SP < [ ]

Rank valid cells by decreasing distance to obstacles

for each valid cell (z;,y;) in ranked order do
Transform (z;,y;) to world frame (Zworld, Yworld)
if distance from (Zworid, Ywora) to all points in SP >

dwp then

9: Add (xworld; yworld) to SP

10: if |[SP| = n then

11 break

12: end if

13: end if

14: end for

15: return SP

A A o

B. PATHSAFE Method

Our PATHSAFE approach automatically places waypoints
along the robot’s traveled path. While the robot explores,
whenever it moves x meters, a waypoint is placed if it is
within y meters away from existing waypoints. This simpler
heuristic:

o Avoids the need for a full post-processing distribution
algorithm.

« Ensures a consistent spacing of scan points in continu-
ous or corridor-like environments. * Minimizes the risk
of large unscanned regions by methodically covering the
path the robot has physically traversed.

Algorithm 2 PATHSAFE Waypoint Generation

Require: Traveled path P = {py,pa,...,pn}, n =30
Require: Step distance threshold z, min SP spacing y
Ensure: List of waypoint coordinates S P

1: Initialize waypoint list: SP < [ ]

2: Set last_wp_position < py

3: Add p; to SP

4: for each point p; in P do

5 if distance(p;, last_wp_position) > x then
6: if distance(p;, all SP € SP) > y then
7: if |SP| = n then

8: break

o: end if

10: Add p; to SP

11: Set last_wp_position < p;

12: end if

13: end if

14: end for

15: return SP
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Fig. 2. Three testing environments (a) an indoor wide space, (b) indoor narrow hallway, and (c) an outdoor forest

C. NBV-Greedy Method

The NBV-Greedy [25] starts by converting a grayscale map
into a binary representation. It iteratively evaluates candidate
points, ensuring they are spaced apart by a minimum distance
and maximize coverage within a defined circular radius. For
each valid point, it checks how much new area it would cover
and updates the list of selected waypoints if the candidate
contributes to additional coverage. The process stops once
the desired number of waypoints is selected or all candidates
are exhausted, and the final set of coordinates is returned.

Algorithm 3 NBV-Greedy Waypoint Selection

Require: map, res, ox, 0y, n, dmin, thobs, Tcov
1: H,W < shape of map

2: free < (map == 254)

3: dist + distance_transform(free)

4: safe + dist > (theps/Tes)

5: V < indices where safe

6: cov <— zero matrix same size as free

7. SP + [ ]

8: Generate circular mask M of radius 7..,
9: for all (y,z) € V do

10: SPx < ox +x-res

11: SPy <+ oy+ (H —y) - res

12:  if SP # () then

13: D « distance(SP, (wz,wy))

14: if 3d € D < d,,;,, then continue
15: end if

16: end if

17: Define ROI [Zin, Timaz)s [Ymins Ymaz] around (2, y)
18: crop < M within ROI bounds

19: sub + zeros like free; insert crop into ROI
20: gain < sum of (sub A free A —cov)
21: if gain > O then

22: Append (wz,wy) to SP

23: cov < cov V (sub A free)

24: end if

25: if |SP| > n then break

26: end if

27: end for

28: return SP

D. Frontier Method

It begins by creating binary masks for free and unknown
cells, then uses morphological dilation to find free cells ad-
jacent to unknown regions, marking these as frontier points.
These frontier areas were grouped into connected regions,
and the centroid of each region was converted from image
to world coordinates. Finally, it returns the total number of
selected frontier scan points.

Algorithm 4 Frontier Waypoint Selection

Require: FrontierWaypointsmap, res, oz, oy, n, dpin
1: H,W < shape of map

: F 254, U + 205

. free + (map ==F)

unk < (map ==U)

kern <— 3 x 3 ones

dil_unk <+ dilate(unk, kern)

. frontier < free A (dil_unk > 0)

: Label frontier — regions

C«]

: for all r € regions do

(y, x) < r.centroid

SPxr <+ ox+x-res

SPy «+ oy+ (H —y) -res

Append (wz, wy) to C

: end for

: SP «+ [ ]

: for all p € C do

if SP empty or dist(p,S) > dyin then

Append p to SP

end if

if |SP| > n then break

end if

: end for

: return SP
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E. Manual Method

This method depends on an operator to manually select
scan points, leveraging human intuition to identify areas of
particular interest, such as regions with complex geometry
(e.g., dense machinery, doors, stairs), potential structural
concerns, or key vantage points offering wide or overlapping



fields of view. While this approach can be more time-
consuming, it often results in optimal coverage for special-
ized or safety-critical applications where expert judgment is
essential.

V. EXPERIMENTAL AND TEST ENVIRONMENTS

Here we investigate five coverage approaches, each differ-
ing in how the waypoints are selected. The scanner maintains
the same configuration (resulting in ~3.5 minute scans),
ensuring consistent data collection. We used FARO SCENE
[26] software to reconstruct the 3D data from the point clouds
and generate a dense 2D map. Table I compares the number
of scan points generated by each algorithm across the two
test environments. In the Basement environment, algorithms
were configured to be placed at least 1.0 meter away from
obstacles, with a minimum spacing of 3.0 meters between
them. For the office environment, the original settings were
too strict for the narrow spaces, so we adjusted the configura-
tion to allow waypoints as close as 0.8 meters from obstacles,
with a minimum spacing of 7.0 meters. With these settings in
place, we then performed our tests using the other algorithms.

We selected three different environments to test our robot
autonomous navigation and scanning. However, The third
environment is an outdoor forest-like area (Fig. 2c) with
numerous eucalyptus trees and limited structural diversity.
Due to unresolved autonomy challenges in mapping and
navigation, it was excluded from the main evaluation, with
key findings summarized in the Section V-A section. The
first environment is the basement of a campus building from
UCSD (as shown in Fig. 2a), a low traffic area with the
only obstacles being tables and chairs, making it an ideal
test site; the narrowest section is approximately 10 feet
wide and extended up to 100 feet, total of 4,176 ft2. The
second environment is an office area in the Computer Science
and Engineering department at UCSD, referred to as office
environment (as shown in Fig. 2b), which also had minimal
foot traffic but featured a more complex layout; its narrow-
est section measured approximately 5.5 feet in width and
stretched up to 185 feet total or 7,982. ft2. For each run, we
first operate the robot in mapping mode to generate a 2D map
using SLAM. Once mapping is complete and the scanning
points are confirmed to be safe for navigation, we switch
to scanning mode, allowing the robot to navigate to each
scanning location and collect data. Note on comparative
evaluation: While our method was compared with the NBV-
Greedy and Frontier algorithms, detailed quantitative analysis
was limited in Sections V and VI. Preliminary tests showed
both methods generated excessive and unsafe scan points,
resulting in long scanning times and significant data overlap.
As shown in Figs. 3e and 4e, NBV-Greedy produced up to
45.24% more waypoints than SCANSAFE and PATHSAFE,
many near obstacles and unsafe for deployment. Similarly,
Figs. 3f and 4f show the Frontier algorithm generated up to
71.95% more waypoints, often in unnavigable areas. Hence,
both algorithms were excluded from physical robot tests.
Although Frontier could aid exploration by collecting frontier
points, it risks placing them in non-navigable regions.

TABLE I: Comparison of scanning algorithms tested across
two environments

Algorithm Basement-Env SP | office-Env SP
SCANSAFE 26 23
PATHSAFE 22 21
NBV-Greedy 36 28
Frontier 51 38
Manual 21 27

A. Outoor-Forest

We tested the system in a forest-like environment with
limited visual features, which caused RTAB-Map to crash due
to poor mapping and localization. Although the robot oper-
ated for 5-10 minutes and initial waypoints were generated,
mapping failures prevented further autonomous navigation
or scan generation. These failures reinforce the need for
robust feature-based localization methods, particularly in
low-texture or natural environments.

B. SCANSAFE Results

1) Basement Environment: The algorithm generated 27
waypoints, and the robot navigated to each waypoint to
initiate scanning. During the scanning process, we had to
intervene twice, once to replace the robot’s battery, and
second, when a person left a door open, the robot tried to
enter the new room while navigating to the next waypoint.
After scanning, we constructed the 3D data with minimal
operator intervention to align the point clouds (as shown in
Fig. 3a).

2) Office Environment: In the second environment, the
algorithm generated 22 waypoints, which we found were
placed in ideal locations such as intersections between hall-
ways. The results from this environment (as shown in Fig.
4a).

There were several manual interventions due to camera
failures, three battery swaps, and one case in which the
robot got stuck under a table which was positioned slightly
above the sensors. Additionally, one of the main room’s
walls is composed almost entirely of glass, which introduced
substantial noise into the mapping process due to the LIDAR
returns. In this complex and large environment, the scanning
waypoints were much too sparse resulting in an excessively
long post-processing phase — algorithmic alignment created
multiple small clusters requiring significant manual stitching
to fully align. This could be fixed by increasing the number of
scanning points allowed, which we had capped at a maximum
of 30 for all environments.

C. PATHSAFE Results

1) Basement Environment: The algorithm generated 22
waypoints, and the robot navigated to each waypoint to
perform scanning. During the process, we intervened once
to replace the robot’s battery. After completing the scans, we
processed the data, and the operator efficiently constructed
the 3D data without needing extra effort to align the point
clouds (as shown in Fig. 3b).
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Fig. 3. Waypoints scan position for the Basement environment generated by: (a) SCANSAFE (26), (b) PATHSAFE (22),
and (c) Manual (21). (d) RTAB-Map 2D map generated for robot navigation (¢) NBV-Greedy (36) in simulation, (f) Frontier
(51) in simulation, (g) Ground Truth, and (h) Overlay FARO and RTAB-Map over the Ground Truth.

TABLE II: Combined Summary of Experiment and Algorithm Testing Results

Env Alg SP  PP-Time (hr) Coverage (%) Acc (%) ToC Safety Stop
RTAB-Map FARO-Scanner RTAB-Map FARO-Scanner

SCANSAFE 26 2.5 89.97 91.61 91.05 96.71 2h 04m (2 intv. 1
Basement PATHSAFE 22 2.0 90.00 87.89 86.94 93.73 1h 44m (1 intv. 0
* Manual 21 1.5 89.78 91.84 89.38 96.62 1h 41m (1 intv. 0
SCANSAFE 23 33 94.83 90.86 67.82 83.83 2h 25m (7 intv. 4
office PATHSAFE 21 32 93.66 89.42 67.84 81.35 2h 05m (7 intv. 3
Manual 27 35 87.93 83.70 70.40 72.20 2h 12m (2 intv. 0

2) Office Environment: the algorithm generated 21 way-
points (as shown in the Fig. 4b). The robot encountered
difficulties navigating the narrow sections due to the graph-
based SLAM algorithm’s limitations in recognizing features
and achieving loop closure. This required about 10 manual
interventions and three battery swaps.

Similar to the SCANSAFE algorithm, the operator spent a
couple of hours realigning the point clouds, with the scanning
data forming seven puzzle-like pieces.

D. Human-Manual Results

1) Basement Environment: The A human expert manually
identified suitable scanning locations, generating 21 way-
points. The robot was then navigated to each waypoint, where
scans were manually initiated. After completing the scans,
the data was processed, and the FARO SCENE software
automatically aligned the collected scans without requiring
additional input from the operator (as shown in Fig. 3c).

2) Office Environment: We manually navigated the robot
to each of the total 27 waypoints and initiated the scans.

However, the scanning data required at least an hour of
manual effort to reconstruct the point clouds, resulting in
four puzzle-like pieces.

VI. EVALUATION

We used the key metrics and parameters shown in Table
II for our evaluation, described as follows:

« Env: The type and layout of the environment in which
the experiment was carried out.

o Alg: The specific method used to determine the scanning
points.

o SP: The total number of waypoints generated by the
algorithm or manual for the robot to navigate and scan.

o PP-Time, hours: The post-processing time that the
operator needs to process the scan data using FARO
SCENE software after all the scan points have been
collected.

o Coverage: The ratio of overlapping white pixels be-
tween the ground truth and sensor image to the total
white pixels in the ground truth.
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Fig. 4. Scan results for office building. (a) SCANSAFE (23), (b) PATHSAFE (21), (c) Manual (27), (d) RTAB-Map online
generated 2D map for robot navigation and autonomous waypoint, (e) NBV-Greedy (28), (f) Frontier (38), (g) Ground Truth,

(h) Overlay FARO and RTAB-Map over the Ground Truth.
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Fig. 5. SCANSAFE, PATHSAFE, and Manual methods applied on the office 3rd Floor map, with scans processed in FARO
SCENE for automatic reconstruction. Results highlight reconstruction challenges due to poor synchronization or insufficient

40% overlap.

o Acc: The ratio of overlapping white pixels to the total
white pixels in the sensor image.

e ToC: Time of Completion to complete the scanning
process, including robot navigation and user interaction.

o Safety Stop: The total number of waypoints the robot
navigates to where the FARO scanner captures data.

The primary finding (as shown in Table II) is that the
SCANSAFE and PATHSAFE algorithms perform effectively
in open and less constrained environments. The PATHSAFE
method tends to require fewer scan points, reducing op-
erational time and effort. However, in more complex and
narrow areas, such as the office building, waypoint selection
proved challenging. The scans could not be successfully re-
constructed algorithmically using FARO SCENE software (as
shown in Fig. 5). All methods struggled to identify optimal
scan positions in such environments, which hindered FARO

SCENE’s ability to perform accurate 2D registration. Based
on expert feedback, scans must be placed approximately 3
feet apart in narrow spaces with few distinguishing features.
Nonetheless, the SCANSAFE method was more likely to
place scan points near intersections, contributing to better
coverage. Overall, the SCANSAFE algorithm achieves a
balance between coverage and redundancy, while the PATH-
SAFE method is more straight forward. However,it can lead
to more overlap. The manual approach, although subjective,
often focuses on areas of higher interest. Shadow issues
were also observed when the scanner was used on the robot
similar to [17]. Additionally, the navigation map generated
in seconds by the SLAM algorithm proved useful and could
help operators pre-plan scanning points for better result, a
direction we plan to explore in future work.



A. Discussion: Limitations and Ethical Considerations

The algorithms are sensitive to poor mapping, causing
navigation failures in environments like forests. Battery life
and sensor occlusion (e.g., glass walls) also impact reliability.
Ethical concerns include deployment in active construction
sites, where human presence poses safety challenges. The
system is designed to assist, not replace, human operators,
and should be used with oversight. Data privacy and environ-
mental impact warrant further consideration. Moreover, such
robotic systems could prove valuable in hazardous or hard-
to-reach areas, such as disaster zones or structurally unstable
environments. In these scenarios, autonomous operation can
reduce risk to human workers while still enabling critical
inspection and data collection.

VII. CONCLUSION

We presented a task-oriented autonomy system, tested in
two environments and compared against existing baselines
and a manual approach. The system integrates a SLAM and
navigation stack based on ROS with a FARO high-resolution
scanner payload. It automates both exploration and scan-
ning, offering two distinct methods for scan point selection:
SCANSAFE, which maximizes coverage, and PATHSAFE,
which is quicker to implement and more intuitive. The
manual approach leverages expert insight. In all methods, the
operator is not required to carry the scanning equipment —
the robot handles transportation. The system generates a 2D
map of the environment, which serves as input to the naviga-
tion system for determining optimal scanning waypoints. Our
findings emphasize the importance of aligning the coverage
strategy with specific operational goals such as resolution,
time constraints, and redundancy. By evaluating these meth-
ods through real-world experiments, we provide a reference
for future deployments of quadruped-based scanning systems,
supporting broader use in automated workflows particularly
in environments hazardous to humans.
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