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Introduction

@ Interested in integration of function to allow estimation of future value
@ Lots of potential applications in robotics

o Position estimation
o Path optimization
e |Image restoration

@ Consider both end-point and boundary value problems, which anchors the
problem
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Introduction - Setting the stage

@ We are trying to solve

| = /ab f(x)dx

@ trying to solve | = y(b) for the equation

dy
7 _Ff
o~ %)
@ with the boundary condition
y(a) =0
@ Objective to generate a good estimate of y(b) with a reasonable number of

evaluations

@ Emphasis on 1D problems, but in most cases generalization is straight forward
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Setting the stage
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Basic use of Simpson’s rule

@ Consider equally spaces data points

xi=xo+ihi=0,1,... N

the function is evaluated at x;
fi = f(x)

@ The Newton-Cotes rules is then

/ Fde = 21001 orh)
Xo

The Simpson rules is

/ f(x)dx = g(fo +4f 4+ hH)+ O(h5f(4))

X0

which is exact to the 3rd degree
The Simpson % rule

X3 h
/ F(x)ax = (36 + 9F; + 96, +36)

X0

There are a series of rules for higher order, check literature
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Simpson’s Rule
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Simpson / Trapezoid Rules

@ Clearly the local rules can be chained into a longer evaluation

@ (xo0,x1), (x1,x2),...,(xn—1,%n) to get an extended trapezoid form

XN 1 1
/ f(X)dX:h(Eﬁ)‘i‘ﬂ“—fQ—{—...—FfN—l‘i‘—fN)

. 2
(XN — Xo)f//
0 (—N2

@ The error estimate is
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Trapezoid Rule - Strategy?

@ How can you effective use the trapezoid rule?

H. I. Christensen (UCSD) Math for Robotics Oct 2023

Trapezoid Rule - Strategy?

@ How can you effective use the trapezoid rule?
@ Use of a coarse to fine strategy and watch convergence
@ This is termed Romberg integration in numerical toolboxes

@ In general these methods generate good accuracy for proper functions?
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Handling of improper function

@ What is an improper function?
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Handling of improper function

@ What is an improper function?
© Integrand goes to a finite value but cannot be evaluated at a point, such as

sinx
— atx=0
X

@ Upper limit is co or lower limit is —oo
© Has a singularity at a boundary point, e.g.,

x Y23t x=0

© Has a singularity within the interval at a known location
@ Has a singularity within the interval at an unknown location

o If the value is infinite, e.g.,

o0 o
/ x Ldx or / cosxdx
0 —00

it is not improper but impossible
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The Euler-Maclaurin Summation Formula

@ We can write the basic Simpson's rule as

JPF()dx = 8 f(a) + 2500 f(a+ kh) + F(b)]

2k

— Y3 TR [F D (b) — £ (a)]
2k+1

_ 22/2—01 h (2+k)8!2k f‘(2k)(a + kh+ eh)

where 2m first derivatives are continuous over (a,b). h = (a-b)/N and

o
8 €(0,1)
@ So what are the B's?
@ They are Bernoulli numbers
o
t t"
et —1 Z B”H
n=0
@ example values
By, = 1
_ 1
B = ¢ X
B4 — —%
@ Enables you to compute an estimate of the error for a particular integration

@ Other integration functions have similar error functions - decreasing with
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Extended Mid-point Formulation

@ In many cases using the mid-point is a valuable alternative
XN—1 1
| FRdx = hliya ot Bga ot fusa) + Oly)

X0

@ When combined with the Euler-Maclaurin you get

f;;N—l f(X)dX = h(f%/2+fé/2+...+f/v_3/2)k
2 2k 2k
B ) (R - )

@ We can do this recursively to estimate convergence

Math for Robotics
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Handling improper integrals

@ A trick for improper integrals is to do variable substitution to eliminate a
challenge

@ Say one of the values is at —oco or co we can substitute

b 1/a 1 1
/ f(x)dx :/ —f (—) dt
a 1/b t t
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Variable substitution

@ More generally we can do variable substitution as

b d
/= / F(x)dx = / f(x(t))%dt
@ An example is the Schwartz tanh rule
1 1
X = §(b+ a) + E(b — a)tanh(t) x € [a, b] and t € [—00, 0]

@ where

Ox

ot

@ sech() converges very rapidly for t — oo which allows for integration close to
singularities

1 2 2
— §(b — a)sech”(t) = E(b —t)(t—a)
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Gauss Integration

@ Sometimes uniform sampling is not ideal
@ A Gauss model may be an alternative
@ The idea is
b N—-1
/ W (x)f(x)dx ~ Z W;f(x;)
a =0
@ For polynomials this can be an exact approximation
@ We can approximate f(x) with a Gaussian Mixture and choose weights to
match
N
f(x) =~ Z Wi N(x|xk, oK)
k=0
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Partitioned / Adaptive Integration

@ If you have a function with variable dynamics it makes sense to partition the
integration into intervals and use Romberg integration on each interval, i.e.

I = fabf(x)dx
= [T F(x)dx+ [ F(x)dx

@ Rule 1 of data analysis understand your data
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Simple linear approximations are effective for well-behaved functions

The order of your approximation can vary according to function complexity

Recursive estimation with error monitoring is often effective

°
°
@ Using Bernoulli functions we can approximate the estimated error
°
@ Do a function analysis first to make sure function is proper

°

Next we will discuss integration of ODE with standard methods such as
Runga-Kutta, Step-size variation, etc.

H. I. Christensen (UCSD) Math for Robotics Oct 2023 17 /41

Questions
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Introduction

@ For integration of a set of ordinary differential equations you can always
reduce it into a set of first order differential equations.

e Example
d?y dy
&2 + CI(X)& = r(x)
@ which can be rewritten
2 = 2
& = r(x)—q(x)z(x)

@ where z is a new variable

H. I. Christensen (UCSD) Math for Robotics Oct 2023



Small example

@ Consider a simple motion of a mass when actuated by a mass

d2U1
F(u) =
(i) = m-5
@ We can rewrite this as )
d uy 1
=—F
dt? m (u1)
@ We can introduce u; = % to generate
“o=
G = wF(um)
OR J
d—Ltl = f(u, t) with u = < :’l )
where
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Introduction (cont)

@ The generic problem is thus a set of couple 1st order differential equations

dy;(x)
- fl Ir ) s+ ¥n
> (Xisy1, y2 Yn)

@ There are three major approaches:

@ Runge-Kutta: Euler type propagation

© Richardson extrapolation / Burlirsch-Stoer: extrapolation type estimation with
small step sizes

© Predictor-Corrector: extrapolation with correction.

@ Runge-Kutta most widely adopted for “generic” problems. Great if function
evaluation is cheap

@ Burlirsch-Stoer generates higher precision

@ Predictor-Corrector is historically interesting, but rarely used today
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@ The forward Euler method is specified as

Ynr1=Yyn+ hf(xna)/n)

with x,41 =X, + h
@ A problem is that the integration is asymmetric

Yy A y(x)/
yn+1 / 4
/ 3

2

Yn 1

<Y

Xn Xn+‘/z Xni1
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Runge-Kutta - Stepped Up

@ We can use a mid-point to get a closer estimate, i.e.,

H. I. Christensen (UCSD)

4th order Runge-Kutta

@ We can easily extend to richer models. A typical example is the fourth order

model

ky
Yn+1

@ Requires four function evaluations for every step

H. I. Christensen (UCSD)

ki = hf(men)
ko = hf(xn+ 3h,yn+ ki)
Ynr1i = Yn+ ko + O(hs)

Math for Robotics

hf (Xn, ¥n)
hf(Xn + lha}’n + %
hf(Xn + Eh’y" + )

hf(Xn + h7yn + k3)

kq
ko

)
)

Oct 2023

Yo+ tki+ ko + Sk + 2ks + O(H°)
@ By far the most frequently used RK method for ODE integration

Math for Robotics
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Adaptive Runge-Kutta

@ Could we adjust the step-size?

@ Estimation of performance adds an overhead
@ What would be an obvious solution?
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Adaptive Runge-Kutta

@ Could we adjust the step-size?

@ Estimation of performance adds an overhead

@ What would be an obvious solution?

© Do a full step

@ Do a half step

© Compare (could be recursive)
Q@ Next

@ In general no one goes beyond 5th order Runge-Kutta
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Pl step control of RK

@ Could we use Pl control to track stepsize?

H. I. Christensen (UCSD) Math for Robotics Oct 2023

Pl step control of RK

@ Could we use Pl control to track stepsize?

@ How about

_ B
hny1 = Shperriyerr, |

where S is a scale factor. « and 3 are gain factors

@ Typical default values o = % —0.758 and 8 = 074 and k is an integer that
designates order of the integrator
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Richardson Extrapolation / Burlirsch-Stoer

Aimed at smooth functions

Generates best precision with minimal effort

Things to consider

@ Does not do well on functions w. table lookup or interpolation
@ Not well suited for functions with singulaties within intg range
© Not well suited for “expensive” functions

The approach is based on three ideas

@ Final answer is based on selection of (adaptive) stepsize just like Romberg
@ Use of rational functions for extrapolation (allow larger h)
© Integration method reply on use of even functions

Typically the steps size H is large and h is 100+ steps
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Burlirsch-Stoer - The details

e Consider a modified mid-point strategy

but with sub-steps

Xp+1 = Xn + H

H
h=—
n

@ We can rewrite the integration

20
V4]

Zm+1
y(n, + H)

y(xn)

2o + hf(xn, z0)

Zm—1 + 2hf(x, + mh,z,) m=1,23,..n—1
[zn + zo—1 + hf(x + H, z,)]

@ Centered mid-point or centered difference method

@ The error can be shown to be

Yo —y(x+ H) = Z a;hzi
i=0

@ The power series implies that we can potentially do less evaluation.

H. I. Christensen (UCSD)
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Burlirsch-Stoer - How good is it?

@ Suppose n is even and y,/, is the results of half as many steps

@ Then

4yn — Yn/2

y(x+H)=——

@ which is arccurate to the 4th order as Runge-Kutta but with 2/3 less
derivative evaluation?

@ How do you choose good step sizes for refinement?

H. I. Christensen (UCSD)
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Burlirsch-Stoer - How good is it?

Suppose n is even and y,/, is the results of half as many steps
Then

4yn — Yn/2
3

which is arccurate to the 4th order as Runge-Kutta but with 2/3 less
derivative evaluation?

y(x+H) =

How do you choose good step sizes for refinement?

One strategy could be
n=2,4,6,8,12,16,24,32,... n_2n;_»
more recently a suggestion

n—2,3,6,8,10,12,14,... nj=2(j + 1)
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Step size control for Burlirsch-Stoer

@ The error estimate can be tabulated as

Too
Tio To1
Too Ti1 T

@ where Tj is the Lagrange interpolation of order i with j points. The relation
between the polynomials is

2Tk,j — Tk—l,j
nk/nk_j_l)z -1

nﬁ4:( j=01,... k-1

@ Each stepsize starts a new row. The difference Ty, — Tik—_1 is an an error
estimate

@ We can pre-compute the error estimates and use them to decide on step-size
selection
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Variable Dynamics

@ Sometimes the variable dynamics are very different

@ Consider
v = 998u 4+ 1998v

v/ = —999u — 1999v
e with u(0) =1 and v(0) = 0 we can get
u=2y—z V=—y—z
We can solve and find

U = 2eX_— e—lOOOX

v = —e X4 e—lOOOx

@ The differneces in dynamics would generate challenging step sizes
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Partial Differential Equations

@ Huge topics that has its own course - MATH 110/MATH 231 A-C

@ Widely used for studies of physical systems - simulation / analysis
@ Three main categories
© Hyperbolic (wave equation)

Pu_ i

W_Vax2

where v is the speed of wave propagation
@ Parabolic (diffusion equation)

ou 0 ou
ot~ ox (Da>
where D is the diffusion coefficient

© Elliptic (Poisson equation)

Pu  O%u B
D + 8_y2 = p(x,y)

where p() is the source term.
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Computational Considerations for PDEs

boundary
values
[ ] L] [e] ]
L] o [©) o ® L]
® o o o o o o o ®
bound:
® o o o o o o [} ® c::;,ﬁs L4 ° o ° o o L4
® o o o o o o o ® ° o e} o) o °
. . . . . . ° ° o o o °
[ ] [ ] L] °
initial values
Initial Value Boundary Value

Source - Numerical Recipes.
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Finite difference calculations

In most cases grid propagation o

Finite differences is a basic approximation ]

Final structure is a sparse matrix L]

Numerous models and packages to address
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We can organize ODEs as a set of coupled 1st order ODEs

Runge-Kutta is ideal for “cheap” functions, especially 4th order
approximation

Buerlirsch-Stoer is ideal for high-accuracy integration

It is important to consider the variable dynamics in integration of functions.

Adaptive stepsize is often valuable as a way to generate realistic complexity
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