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Introduction

Interested in integration of function to allow estimation of future value

Lots of potential applications in robotics
Position estimation
Path optimization
Image restoration

Consider both end-point and boundary value problems, which anchors the
problem
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Introduction - Setting the stage

We are trying to solve

I =

Z b

a
f (x)dx

trying to solve I = y(b) for the equation

@y

@x
= f (x)

with the boundary condition
y(a) = 0

Objective to generate a good estimate of y(b) with a reasonable number of
evaluations

Emphasis on 1D problems, but in most cases generalization is straight forward
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Setting the stage
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Basic use of Simpson’s rule

Consider equally spaces data points

xi = x0 + ih i = 0, 1, ...,N

the function is evaluated at xi

fi = f (xi )

The Newton-Cotes rules is then
Z x1

x0

f (x)dx =
f1 + f0

2
h + O(f 00h3)

The Simpson rules is
Z x2

x0

f (x)dx =
h

3
(f0 + 4f1 + f2) + O(h5f (4))

which is exact to the 3rd degree
The Simpson 3

8 rule
Z x3

x0

f (x)dx =
h

8
(3f0 + 9f1 + 9f2 + 3f3)

There are a series of rules for higher order, check literature
H. I. Christensen (UCSD) Math for Robotics Oct 2023 6 / 41



Simpson’s Rule
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Simpson / Trapezoid Rules

Clearly the local rules can be chained into a longer evaluation

(x0, x1), (x1, x2), . . . , (xN�1, xN) to get an extended trapezoid form

Z xN

x0

f (x)dx = h(
1

2
f0 + f1 + f2 + . . .+ fN�1 +

1

2
fN)

The error estimate is

O

✓
(xN � x0)f 00

N2

◆
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Trapezoid Rule - Strategy?

How can you e↵ective use the trapezoid rule?

Use of a coarse to fine strategy and watch convergence

This is termed Romberg integration in numerical toolboxes

In general these methods generate good accuracy for proper functions?
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Handling of improper function

What is an improper function?

1 Integrand goes to a finite value but cannot be evaluated at a point, such as

sinx
x

at x = 0

2 Upper limit is 1 or lower limit is �1
3 Has a singularity at a boundary point, e.g.,

x�1/2 at x = 0

4 Has a singularity within the interval at a known location
5 Has a singularity within the interval at an unknown location

If the value is infinite, e.g.,

Z 1

0
x�1dx or

Z 1

�1
cosxdx

it is not improper but impossible
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The Euler-Maclaurin Summation Formula

We can write the basic Simpson’s rule as
R b
a f (x)dx = h

2

h
f (a) + 2

PN�1
k=1 f (a+ kh) + f (b)

i

�
PN/2

k=1
h2kB2k
(2k)! [f

(2k�1)(b)� f (2k�1)(a)]

�
PN�1

k=0
h2k+1B2k
(2k)! f (2k)(a+ kh + ✓h)

where 2m first derivatives are continuous over (a,b). h = (a-b)/N and
✓ 2 (0, 1)
So what are the B’s?
They are Bernoulli numbers

t

et � 1
=

1X

n=0

Bn
tn

n!

example values
B0 = 1
B2 = 1

6
B4 = � 1

30

Enables you to compute an estimate of the error for a particular integration
Other integration functions have similar error functions - decreasing with
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Extended Mid-point Formulation

In many cases using the mid-point is a valuable alternative

Z xN�1

x0

f (x)dx = h(f1/2 + f3/2 + . . .+ fN�3/2) + O(
1

N2
)

When combined with the Euler-Maclaurin you get

R xN�1

x0
f (x)dx = h(f1/2 + f3/2 + . . .+ fN�3/2)

+ B2h
2

4 (f 0N�1 � f 00 ) + . . .+ B2kh
2k

(2k)! (f
(2k)
N�1 � f (2k)0 ) + . . .

We can do this recursively to estimate convergence
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Handling improper integrals

A trick for improper integrals is to do variable substitution to eliminate a
challenge

Say one of the values is at �1 or 1 we can substitute

Z b

a
f (x)dx =

Z 1/a

1/b

1

t2
f

✓
1

t

◆
dt
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Variable substitution

More generally we can do variable substitution as

I =

Z b

a
f (x)dx =

Z d

c
f (x(t))

dx

dt
dt

An example is the Schwartz tanh rule

x =
1

2
(b + a) +

1

2
(b � a) tanh(t) x 2 [a, b] and t 2 [�1,1]

where
@x

@t
=

1

2
(b � a)sech2(t) =

2

b � a
(b � t)(t � a)

sech() converges very rapidly for t ! 1 which allows for integration close to
singularities

H. I. Christensen (UCSD) Math for Robotics Oct 2023 14 / 41



Gauss Integration

Sometimes uniform sampling is not ideal

A Gauss model may be an alternative

The idea is Z b

a
W (x)f (x)dx ⇡

N�1X

j=0

Wj f (xj)

For polynomials this can be an exact approximation

We can approximate f(x) with a Gaussian Mixture and choose weights to
match

f (x) ⇡
NX

k=0

WkN(x |xk ,�k)
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Partitioned / Adaptive Integration

If you have a function with variable dynamics it makes sense to partition the
integration into intervals and use Romberg integration on each interval, i.e.

I =
R b
a f (x)dx

=
R m
a f (x)dx +

R b
m f (x)dx

Rule 1 of data analysis understand your data
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Starting

Simple linear approximations are e↵ective for well-behaved functions

The order of your approximation can vary according to function complexity

Using Bernoulli functions we can approximate the estimated error

Recursive estimation with error monitoring is often e↵ective

Do a function analysis first to make sure function is proper

Next we will discuss integration of ODE with standard methods such as
Runga-Kutta, Step-size variation, etc.
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Questions

Questions
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Introduction

For integration of a set of ordinary di↵erential equations you can always
reduce it into a set of first order di↵erential equations.

Example
d2y

dx2
+ q(x)

dy

dx
= r(x)

which can be rewritten

dy
dx = z(x)
dz
dx = r(x)� q(x)z(x)

where z is a new variable
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Small example

Consider a simple motion of a mass when actuated by a mass

F (u1) = m
d2u1
dt2

We can rewrite this as
d2u1
dt2

=
1

m
F (u1)

We can introduce u2 =
du1
dt to generate

du1
dt = u2
du2
dt = 1

mF (u1)

OR
du

dt
= f (u, t) with u =

✓
u1
u2

◆

where

f =

✓
u2

F (u1)
m

◆
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Introduction (cont)

The generic problem is thus a set of couple 1st order di↵erential equations

dyi (x)

dx
= fi (xi , y1, y2, . . . , yn)

There are three major approaches:
1 Runge-Kutta: Euler type propagation
2 Richardson extrapolation / Burlirsch-Stoer: extrapolation type estimation with

small step sizes
3 Predictor-Corrector: extrapolation with correction.

Runge-Kutta most widely adopted for “generic” problems. Great if function
evaluation is cheap

Burlirsch-Stoer generates higher precision

Predictor-Corrector is historically interesting, but rarely used today
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Runge-Kutta

The forward Euler method is specified as

yn+1 = yn + hf (xn, yn)

with xn+1 = xn + h

A problem is that the integration is asymmetric
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Runge-Kutta - Stepped Up

We can use a mid-point to get a closer estimate, i.e.,

k1 = hf (xn, yn)
k2 = hf (xn +

1
2h, yn +

1
2k1)

yn+1 = yn + k2 + O(h3)
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4th order Runge-Kutta

We can easily extend to richer models. A typical example is the fourth order
model

k1 = hf (xn, yn)
k2 = hf (xn +

1
2h, yn +

1
2k1)

k3 = hf (xn +
1
2h, yn +

1
2k2)

k4 = hf (xn + h, yn + k3)
yn+1 = yn +

1
6k1 +

1
3k2 +

1
3k3 +

1
6k4 + O(h5)

By far the most frequently used RK method for ODE integration

Requires four function evaluations for every step
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Adaptive Runge-Kutta

Could we adjust the step-size?

Estimation of performance adds an overhead

What would be an obvious solution?

1 Do a full step
2 Do a half step
3 Compare (could be recursive)
4 Next

In general no one goes beyond 5th order Runge-Kutta
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PI step control of RK

Could we use PI control to track stepsize?

How about
hn+1 = Shnerr

↵
n err

�
n�1

where S is a scale factor. ↵ and � are gain factors

Typical default values ↵ = 1
k � 0.75� and � = 0.4

k and k is an integer that
designates order of the integrator
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Richardson Extrapolation / Burlirsch-Stoer

Aimed at smooth functions

Generates best precision with minimal e↵ort

Things to consider
1 Does not do well on functions w. table lookup or interpolation
2 Not well suited for functions with singulaties within intg range
3 Not well suited for “expensive” functions

The approach is based on three ideas
1 Final answer is based on selection of (adaptive) stepsize just like Romberg
2 Use of rational functions for extrapolation (allow larger h)
3 Integration method reply on use of even functions

Typically the steps size H is large and h is 100+ steps
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Burlirsch-Stoer - The details

Consider a modified mid-point strategy

xn+1 = xn + H

but with sub-steps

h =
H

n
We can rewrite the integration

z0 = y(xn)
z1 = z0 + hf (xn, z0)

zm+1 = zm�1 + 2hf (xn +mh, zn) m = 1, 2, 3, ...n � 1
y(nn + H) = 1

2 [zn + zn�1 + hf (x + H, zn)]

Centered mid-point or centered di↵erence method

The error can be shown to be

yn � y(x + H) =
1X

i=0

↵ih
2i

The power series implies that we can potentially do less evaluation.
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Burlirsch-Stoer - How good is it?

Suppose n is even and yn/2 is the results of half as many steps

Then

y(x + H) =
4yn � yn/2

3

which is arccurate to the 4th order as Runge-Kutta but with 2/3 less
derivative evaluation?

How do you choose good step sizes for refinement?

One strategy could be

n = 2, 4, 6, 8, 12, 16, 24, 32, . . . n=2nj�2

more recently a suggestion

n � 2, 3, 6, 8, 10, 12, 14, . . . nj = 2(j + 1)
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Step size control for Burlirsch-Stoer

The error estimate can be tabulated as

T00

T10 T01

T20 T11 T22

where Tij is the Lagrange interpolation of order i with j points. The relation
between the polynomials is

Tk,j+1 =
2Tk,j � Tk�1,j

(nk/nk�j�1)2 � 1
j = 0, 1, . . . , k � 1

Each stepsize starts a new row. The di↵erence Tkk � Tkk�1 is an an error
estimate

We can pre-compute the error estimates and use them to decide on step-size
selection
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Variable Dynamics

Sometimes the variable dynamics are very di↵erent

Consider
u0 = 998u + 1998v
v 0 = �999u � 1999v

with u(0) = 1 and v(0) = 0 we can get

u = 2y � z v = �y � z

We can solve and find

u = 2e�x � e�1000x

v = �e�x + e�1000x

The di↵erneces in dynamics would generate challenging step sizes
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Partial Di↵erential Equations

Huge topics that has its own course - MATH 110/MATH 231 A-C

Widely used for studies of physical systems - simulation / analysis

Three main categories
1 Hyperbolic (wave equation)

@2u
@t2

= v 2 @
2u

@x2

where v is the speed of wave propagation
2 Parabolic (di↵usion equation)

@u
@t

=
@
@x

✓
D
@u
@x

◆

where D is the di↵usion coe�cient
3 Elliptic (Poisson equation)

@2u
@x2

+
@2u
@y 2

= ⇢(x , y)

where ⇢() is the source term.
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Computational Considerations for PDEs

Initial Value Boundary Value

Source - Numerical Recipes.
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Finite di↵erence calculations

In most cases grid propagation

Finite di↵erences is a basic approximation

Final structure is a sparse matrix

Numerous models and packages to address
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Summary

We can organize ODEs as a set of coupled 1st order ODEs

Runge-Kutta is ideal for “cheap” functions, especially 4th order
approximation

Buerlirsch-Stoer is ideal for high-accuracy integration

It is important to consider the variable dynamics in integration of functions.

Adaptive stepsize is often valuable as a way to generate realistic complexity
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