CSE276C - Interpolation and Approximation

Henrik I. Christensen

Computer Science and Engineering University of California, San Diego
http://cri.ucsd.edu

October 2023

Outline

(1) Introduction
(2) Linear Interpolation

3 Cubic Spline Interpolation

4 Multi-variate interpolation
(5) Kringing Interpolation
(6) Summary

Material

- Numerical Recipes: Chapter 3
- Math for ML: Chapter 9

Objective

- How can we find an approximation / interpolation based on a set of data point?

Objective

- How can we find an approximation / interpolation based on a set of data point?
- Model Based
- We have domain knowledge that can be used
- Battery recharge
- Dynamic Model of Drive System
- Material properties for grasping
- Data Driven
- All we have is the data (and possible constriants)
- Driving in traffic, Painting, ...

Example

Weierstrass Approximation Theorem

Weierstrass Approx. Theorem

If f is a continuous function on the finite closed interval $[a, b]$ then for every $\epsilon>0$ there is a polynomial $p(x)$ (whose degree and coefficients depend on ϵ) such that

$$
\max _{x \in[a, b]}|f(x)-p(x)|<\epsilon
$$

- This is wonderful right?

Weierstrass Approximation Theorem

Weierstrass Approx. Theorem

If f is a continuous function on the finite closed interval $[a, b]$ then for every $\epsilon>0$ there is a polynomial $p(x)$ (whose degree and coefficients depend on ϵ) such that

$$
\max _{x \in[a, b]}|f(x)-p(x)|<\epsilon
$$

- This is wonderful right?
- He does not prescribe a strategy to derive $p(x)$!

Outline

(1) Introduction
(2) Linear Interpolation

3 Cubic Spline Interpolation

4 Multi-variate interpolation
(5) Kringing Interpolation
(6) Summary

Linear interpolation

- Lets start with a single variable case
- We have a set $D=\left(x_{i}, f\left(x_{i}\right)\right) i \in\{0, . ., n\}$
- Connecting adjacent points by line segment

$$
\begin{aligned}
p(x)= & f\left(x_{i}\right)+\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}}\left(x-x_{i}\right) \\
& x \in\left[x_{i}, x_{i+1}\right]
\end{aligned}
$$

- consider it a baseline for other approaches

Lagrange interpolation

- Could we fit an n'th order polynomial through $\mathrm{n}+1$ data points: $\left(x_{i}, y_{i}\right) i \in\{0, . ., n\}$
- Could be done recursively or in a batch form.
- Batch solution is estimating $\mathrm{n}+1$ coefficient using $\mathrm{n}+1$ simultaneous equations

Lagrange interpolation

- Could we fit an n'th order polynomial through $\mathrm{n}+1$ data points:

$$
\left(x_{i}, y_{i}\right) i \in\{0, . ., n\}
$$

- Could be done recursively or in a batch form.
- Batch solution is estimating $n+1$ coefficient using $n+1$ simultaneous equations
- Interpolation polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}
$$

- For each data point we have the equation

$$
y_{i}=a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}+\ldots+a_{n} x_{i}^{n}
$$

- in matrix form

Lagrange interpolation (cont)

- In matrix form we have

$$
\left(\begin{array}{cccccc}
1 & x_{0} & x_{0}^{2} & x_{0}^{3} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & \ldots & x_{1}^{n} \\
& & & \vdots & & \\
1 & x_{n} & x_{n}^{2} & x_{n}^{3} & \ldots & x_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

- or

$$
V x=y
$$

where \mathbf{V} is referred to as a vandermonde matrix.

- Unfortunately the system is frequently poorly conditioned

Lagrange polynominal interpolation

- Consider the $n^{t h}$ degree polynomial factored
- The classic Lagrange formula

$$
\begin{aligned}
p(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left.\left(x_{0}-x_{1}\right)()_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)} y_{0}+ \\
& \frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \ldots\left(x-n_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)} y_{1}+ \\
& \cdots \\
& \frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots\left(x_{n}-x_{n-1}\right)} y_{n}+
\end{aligned}
$$

- or

$$
\begin{gathered}
y_{k} L_{k}\left(x_{k}\right)=y_{k} L_{k}(x) \\
L_{k}(x)=\prod_{\substack{i=0 \\
i \neq j}}^{n} \frac{x-x_{i}}{x_{k}-x_{i}}
\end{gathered}
$$

note

$$
L_{k}\left(x_{i}\right)=\delta_{i k}= \begin{cases}1 & k=i \\ 0 & i \neq k\end{cases}
$$

Lagrange polynominal interpolation (cont)

- The resulting polynomial is

$$
p(x)=\sum_{k=0}^{n} y_{k} L_{k}(x)
$$

- A polynomial that passed through all the data points

LPI - Example

- Lets try to show this for

$$
f(x)=(x-1)^{2}
$$

- Assume we have two data points $(0,1)$ and $(1,0)$.
- This results in $a_{0}=1$ and $a_{1}=0$.
- As $a_{1}=0$ we only have to consider

$$
L_{0}(x)=\frac{x-x_{1}}{x_{1}-x_{0}}=\frac{x-1}{0-1}=-x+1
$$

or

LPI - Example

- Lets try to show this for

$$
f(x)=(x-1)^{2}
$$

- Assume we have two data points $(0,1)$ and $(1,0)$.
- This results in $a_{0}=1$ and $a_{1}=0$.
- As $a_{1}=0$ we only have to consider

$$
L_{0}(x)=\frac{x-x_{1}}{x_{1}-x_{0}}=\frac{x-1}{0-1}=-x+1
$$

or

$$
p(x)=-x+1
$$

LPI - Example (cont)

- Lets add an additional data point (-1, 4)

$$
\begin{array}{ll}
x_{0}=0 & a_{0}=1 \\
x_{1}=1 & a_{1}=0 \\
x_{2}=-1 & a_{2}=4
\end{array}
$$

So

$$
\begin{aligned}
& L_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}} \frac{x-x_{2}}{x_{0}-x_{2}}=-(x-1)(x+1) \\
& L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}} \frac{x-x_{2}}{x_{1}-x_{2}}=\text { Don't care } \\
& L_{2}(x)=\frac{x-x_{0}}{x_{2}-x_{0}} \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{1}{2} x(x-1)
\end{aligned}
$$

LPI - Example (cont)

- Putting it all together

$$
\begin{aligned}
p(x) & =a_{0} L_{0}(x)+a_{1} L_{1}(x)+a_{2} L_{2}(x) \\
& =-(x-1)(x+1)+2 x(x-1) \\
& =(x-1)(-x-1+2 x) \\
& =(x-1)(x-1)=(x-1)^{2}
\end{aligned}
$$

LPI - Example (cont)

- Putting it all together

$$
\begin{aligned}
p(x) & =a_{0} L_{0}(x)+a_{1} L_{1}(x)+a_{2} L_{2}(x) \\
& =-(x-1)(x+1)+2 x(x-1) \\
& =(x-1)(-x-1+2 x) \\
& =(x-1)(x-1)=(x-1)^{2}
\end{aligned}
$$

- The approximation is exact
- For large dataset Lagrange can be a challenge
- Meandering between data-points can become significant

Outline

(1) Introduction
(2) Linear Interpolation
(3) Cubic Spline Interpolation

4 Multi-variate interpolation
(5) Kringing Interpolation
(6) Summary

Cubic spline interpolation

- Smoothing w. constraints
- Limiting higher order gradients (say acceleration, curvature, ...)

$$
\begin{aligned}
f^{\prime \prime \prime \prime} & =0 \\
f^{\prime \prime \prime} & =c_{1} \\
f^{\prime \prime} & =c_{1} x+c_{2} \\
f^{\prime} & =\frac{c_{1}}{2} x^{2}+c_{2} x+c_{3} \\
f & =\frac{c_{1}}{6} x^{3}+\frac{c_{2}}{2} x^{2}+c_{3} x+c_{4}
\end{aligned}
$$

Setting it up

- Assume you have tabulated values $y_{i}=y\left(x_{i}\right)$ for $i=0 \ldots n-1$
- With linear interpolation we can do

$$
y=A y_{j}+B y_{j+1}
$$

for a point between x_{j} and x_{j+1} where

$$
A=\frac{x_{j+1}-x}{x_{j+1}-x_{j}} \quad B=1-A=\frac{x-x_{j}}{x_{j+1}-x_{j}}
$$

so think of them as special cases of Lagrange

- if we further assume we have access to values of $y^{\prime \prime}$ we can do a cubic expansion

Cubic interpolation

- We can expand the interpolation

$$
y=A y_{j}+B y_{j+1}+C y_{j}^{\prime \prime}+D y_{j+1}^{\prime \prime}
$$

where A and B are as defined earlier.

$$
C=\frac{1}{6}\left(A^{3}-A\right)\left(x_{j+1}-x_{j}\right)^{2} \quad D=\frac{1}{6}\left(B^{3}-B\right)\left(x_{j+1}-x_{j}\right)^{2}
$$

- If you differentiate (see NR sec 3.3) you get

$$
\frac{d^{2} y}{d x^{2}}=A y_{j}^{\prime \prime}+B y_{j+1}^{\prime \prime}
$$

which translate into the tabulated values at x_{j} and x_{j+1}.

- The advantage of cubic is that only neighboring points are used in estimation. A tridiagonal matrix can be used for the computations.

Outline

(1) Introduction
(2) Linear Interpolation
(3) Cubic Spline Interpolation

4 Multi-variate interpolation
(5) Kringing Interpolation
(6) Summary

What about multi-variate interpolation?

- Does this generalize to multiple dimensions?
- We frequently have multi-dimensional data in robotics
- Image data, Lidar, radar, ...
- What if we had an m-dimensional Cartesian mesh of data points?

$$
f(\vec{x})=f\left(x_{1 i}, x_{2 j}, x_{3 k}, \ldots, x_{m q}\right)
$$

- For linear interpolation the generalization is straight forward

Bilinear interpolation

- Consider

$$
y_{i j}=y\left(x_{1 i}, x_{2 j}\right)
$$

- with point intervals $\left[x_{1 i}, x_{1(i+1)}\right]$ and $\left[x_{2 j}, x_{2(j+1)}\right]$
- values for ij

$$
\begin{array}{llc}
y_{0} & = & y_{i j} \\
y_{1} & = & y_{(i+1) j} \\
y_{2} & = & y_{(i+1)(j+1)} \\
y_{3} & = & y_{i(j+1)}
\end{array}
$$

Bilinear interpolation (cont)

- The bilinear interpolation is the simplest
- use

$$
\begin{aligned}
t & =\frac{x_{1}-x_{1 i}}{x_{1(i+1)}-x_{1 i}} \\
u & =\frac{x_{2}-x_{2 j}}{x_{2}(j+1)-x_{2 j}}
\end{aligned}
$$

- then the interpolation is

$$
y\left(x_{1}, x_{2}\right)=(1-t)(1-u) y_{0}+t(1-u) y_{1}+t u y_{2}+(1-t) u y_{3}
$$

- For a fair sized grid this generates "good" solutions.

Outline

(1) Introduction
(2) Linear Interpolation
(3) Cubic Spline Interpolation

4 Multi-variate interpolation
(5) Kringing Interpolation
(6) Summary

Kringing interpolation

- What if we consider the data generation by a stochastic process?
- Could we generate a maximum likelihood (ML) estimate?
- The data is a vector of samples from the process and we can compute the probability density estimate and parameters such as the mean
- Sometimes termed Gaussian Process Regression
- More generally we are trying to estimate

$$
f(x)=\sum_{i=0}^{N} w_{i} \phi_{i}(x)=\vec{w} \Phi(\vec{x})
$$

where w are weights and ϕ is a basis function.

Kringing interpolation

- What if we consider the data generation by a stochastic process?
- Could we generate a maximum likelihood (ML) estimate?
- The data is a vector of samples from the process and we can compute the probability density estimate and parameters such as the mean
- Sometimes termed Gaussian Process Regression
- More generally we are trying to estimate

$$
f(x)=\sum_{i=0}^{N} w_{i} \phi_{i}(x)=\vec{w} \Phi(\vec{x})
$$

where w are weights and ϕ is a basis function.

- We can define a loss function

$$
L(f, y)
$$

- The expected loss is then

$$
E[L]=\iint L(f, y(x)) p(x, w) d x d w
$$

- Our goal is now to minimize the $E[L]$, i.e. minimum loss or best fit

$$
f=E(y \mid x)
$$

Basis functions

- We have multiple choices for basis functions
- Sometimes domain knowledge can provide suggestions
- Polynomial basis functions

$$
\phi_{i}(x)=x_{i}
$$

- Gaussian basis functions

$$
\phi_{i}(x)=e^{-\frac{\left(x-x_{i}\right)^{2}}{2 s}}
$$

s controls scale / coverage

- Sigmoid basis functions

$$
\phi_{i}(x)=\sigma\left(\frac{x-x_{i}}{s}\right)
$$

where $\sigma(a)=\frac{1}{1+e^{-a}}$

Kringing interpolation - Gaussian Mixture

- For the Gaussian mixture we can use

$$
p\left(f_{i} \mid x_{i}, w_{i}, \beta\right)=N\left(f_{i} \mid y\left(x_{i}\right), w_{i}, \beta\right)
$$

- so that

$$
p(f \mid X, w, \beta)=\prod_{i=0}^{n} N\left(f_{i} \mid w^{T} \phi\left(x_{i}\right), \beta^{-1}\right)
$$

or

$$
\ln p()=\frac{n}{2} \ln (\beta)-\frac{n}{2} \ln (2 \pi)-\beta E_{D}(w)
$$

where

$$
E_{D}(w)=\frac{1}{2} \sum_{i=0}^{n}\left(y_{i}-w_{i}^{T} \phi\left(x_{i}\right)\right)^{2}
$$

The sum of squared errors

LSQ solution

- We can compute

$$
w_{M L}=\left(\Phi^{T} \Phi\right)^{-1} \Phi^{T} \vec{y}
$$

where

$$
\Phi=\left(\begin{array}{cccc}
\phi_{1}\left(x_{1}\right) & \phi_{2}\left(x_{1}\right) & \ldots & \phi_{n}\left(x_{1}\right) \\
\phi_{1}\left(x_{2}\right) & \phi_{2}\left(x_{2}\right) & \ldots & \phi_{n}\left(x_{2}\right) \\
& \vdots & & \\
\phi_{1}\left(x_{n}\right) & \phi_{2}\left(x_{n}\right) & \ldots & \phi_{n}\left(x_{n}\right)
\end{array}\right)
$$

Kringing example

Regularized Kringing

- We can use a regularized LSQ if we want to control the variation in w.
- Consider a revised error function

$$
E^{\prime}=E_{D}(w)+\lambda E_{w}(w)
$$

say

$$
E^{\prime}=\frac{1}{2} \sum_{i}\left(y_{i}-w^{\top} \phi\left(x_{i}\right)\right)^{2}+\frac{\lambda}{2} w^{\top} w
$$

which is minimized by

$$
w=\left(\lambda+\Phi^{T} \Phi\right)^{-1} \Phi^{T} \vec{y}
$$

as an example of how you can tweak the optimization / approximation

Outline

(1) Introduction
(2) Linear Interpolation

3 Cubic Spline Interpolation

4 Multi-variate interpolation
(5) Kringing Interpolation
(6) Summary

Summary

- Model based and data driven interpolation / approximation
- Basic Methods (Linear)
- Spline based interpolation
- Uni- and Multi-Variate Approaches
- Stochastic Models
- Next time functional interpolation \& approximation

