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Material

Numerical Recipes: Chapter 3

Math for ML: Chapter 9
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Objective

How can we find an approximation / interpolation based on a set of data
point?

Model Based
We have domain knowledge that can be used

Battery recharge

Dynamic Model of Drive System

Material properties for grasping

Data Driven
All we have is the data (and possible constriants)

Driving in tra�c, Painting, ...
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Example
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Weierstrass Approximation Theorem

Weierstrass Approx. Theorem

If f is a continuous function on the finite closed interval [a, b] then for every ✏ > 0
there is a polynomial p(x) (whose degree and coe�cients depend on ✏) such that

max
x2[a,b]

|f (x)� p(x)| < ✏

This is wonderful right?

He does not prescribe a strategy to derive p(x)!
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Linear interpolation

Lets start with a single variable case
We have a set D = (xi , f (xi )) i 2 {0, .., n}

Connecting adjacent points by line segment

p(x) = f (xi ) +
f (xi+1)�f (xi )

xi+1�xi
(x � xi )

x 2 [xi , xi+1]

consider it a baseline for other approaches
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Lagrange interpolation

Could we fit an n’th order polynomial through n+1 data points:
(xi , yi ) i 2 {0, .., n}
Could be done recursively or in a batch form.

Batch solution is estimating n+1 coe�cient using n+1 simultaneous
equations

Interpolation polynomial

p(x) = a0 + a1x + a2x
2 + . . .+ anx

n

For each data point we have the equation

yi = a0 + a1xi + a2x
2
i + . . .+ anx

n
i

in matrix form
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Lagrange interpolation (cont)

In matrix form we have
0

BBB@

1 x0 x20 x30 . . . xn0
1 x1 x21 x31 . . . xn1

...
1 xn x2n x3n . . . xnn

1

CCCA

0

BBB@

a0
a1
...
an

1

CCCA
=

0

BBB@

y0
y1
...
yn

1

CCCA

or
V x = y

where V is referred to as a vandermonde matrix.

Unfortunately the system is frequently poorly conditioned
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Lagrange polynominal interpolation

Consider the nth degree polynomial factored

The classic Lagrange formula

p(x) = (x�x1)(x�x2)...(x�xn)
(x0�x1)(x0�x2)...(x0�xn)

y0+
(x�x0)(x�x2)...(x�xn)

(x1�x0)(x1�x2)...(x1�xn)
y1+

. . .
(x�x0)(x�x2)...(x�xn�1)

(xn�x0)(xn�x1)...(xn�xn�1)
yn+

or
ykLk(xk) = ykLk(x)

Lk(x) =
nY

i = 0
i 6= j

x � xi
xk � xi

note

Lk(xi ) = �ik =

⇢
1 k = i
0 i 6= k
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Lagrange polynominal interpolation (cont)

The resulting polynomial is

p(x) =
nX

k=0

ykLk(x)

A polynomial that passed through all the data points
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LPI - Example

Lets try to show this for
f (x) = (x � 1)2

Assume we have two data points (0,1) and (1,0).

This results in a0 = 1 and a1 = 0.

As a1 = 0 we only have to consider

L0(x) =
x � x1
x1 � x0

=
x � 1

0� 1
= �x + 1

or

p(x) = �x + 1
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LPI - Example (cont)

Lets add an additional data point (-1, 4)

x0 = 0 a0 = 1
x1 = 1 a1 = 0
x2 = �1 a2 = 4

So
L0(x) = x�x1

x0�x1
x�x2
x0�x2

= �(x � 1)(x + 1)
L1(x) = x�x0

x1�x0
x�x2
x1�x2

= Don’t care
L2(x) = x�x0

x2�x0
x�x1
x2�x1

= 1
2x(x � 1)
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LPI - Example (cont)

Putting it all together

p(x) = a0L0(x) + a1L1(x) + a2L2(x)
= �(x � 1)(x + 1) + 2x(x � 1)
= (x � 1)(�x � 1 + 2x)
= (x � 1)(x � 1) = (x � 1)2

The approximation is exact

For large dataset Lagrange can be a challenge

Meandering between data-points can become significant
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Cubic spline interpolation

Smoothing w. constraints

Limiting higher order gradients (say acceleration, curvature, ...)

f 0000 = 0
f 000 = c1
f 00 = c1x + c2
f 0 = c1

2 x
2 + c2x + c3

f = c1
6 x

3 + c2
2 x

2 + c3x + c4
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Setting it up

Assume you have tabulated values yi = y(xi ) for i = 0 . . . n � 1

With linear interpolation we can do

y = Ayj + Byj+1

for a point between xj and xj+1 where

A = xj+1�x
xj+1�xj

B = 1� A = x�xj
xj+1�xj

so think of them as special cases of Lagrange

if we further assume we have access to values of y 00 we can do a cubic
expansion
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Cubic interpolation

We can expand the interpolation

y = Ayj + Byj+1 + Cy
00

j + Dy
00

j+1

where A and B are as defined earlier.

C = 1
6 (A

3 � A)(xj+1 � xj)2 D = 1
6 (B

3 � B)(xj+1 � xj)2

If you di↵erentiate (see NR sec 3.3) you get

d2y

dx2
= Ay

00

j + By
00

j+1

which translate into the tabulated values at xj and xj+1.

The advantage of cubic is that only neighboring points are used in
estimation. A tridiagonal matrix can be used for the computations.
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What about multi-variate interpolation?

Does this generalize to multiple dimensions?

We frequently have multi-dimensional data in robotics
Image data, Lidar, radar, ...

What if we had an m-dimensional Cartesian mesh of data points?

f (~x) = f (x1i , x2j , x3k , . . . , xmq)

For linear interpolation the generalization is straight forward
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Bilinear interpolation

Consider
yij = y(x1i , x2j)

with point intervals [x1i , x1(i+1)] and [x2j , x2(j+1)]

values for ij
y0 = yij
y1 = y(i+1)j

y2 = y(i+1)(j+1)

y3 = yi(j+1)
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Bilinear interpolation (cont)

The bilinear interpolation is the simplest

use
t = x1�x1i

x1(i+1)�x1i

u = x2�x2j
x2(j+1)�x2j

then the interpolation is

y(x1, x2) = (1� t)(1� u)y0 + t(1� u)y1 + tuy2 + (1� t)uy3

For a fair sized grid this generates “good” solutions.
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Kringing interpolation

What if we consider the data generation by a stochastic process?
Could we generate a maximum likelihood (ML) estimate?
The data is a vector of samples from the process and we can compute the
probability density estimate and parameters such as the mean
Sometimes termed Gaussian Process Regression
More generally we are trying to estimate

f (x) =
NX

i=0

wi�i (x) = ~w�(~x)

where w are weights and � is a basis function.

We can define a loss function
L(f , y)

The expected loss is then

E [L] =

Z Z
L(f , y(x))p(x ,w)dxdw

Our goal is now to minimize the E [L], i.e. minimum loss or best fit

f = E (y |x)
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Basis functions

We have multiple choices for basis functions

Sometimes domain knowledge can provide suggestions

Polynomial basis functions
�i (x) = xi

Gaussian basis functions

�i (x) = e�
(x�xi )

2

2s

s controls scale / coverage

Sigmoid basis functions

�i (x) = �

✓
x � xi

s

◆

where �(a) = 1
1+e�a
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Kringing interpolation - Gaussian Mixture

For the Gaussian mixture we can use

p(fi |xi ,wi ,�) = N(fi |y(xi ),wi ,�)

so that

p(f |X ,w ,�) =
nY

i=0

N(fi |wT�(xi ),�
�1)

or
lnp() =

n

2
ln(�)� n

2
ln(2⇡)� �ED(w)

where

ED(w) =
1

2

nX

i=0

(yi � wT
i �(xi ))

2

The sum of squared errors
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LSQ solution

We can compute
wML = (�T�)�1�T~y

where

� =

0

BBB@

�1(x1) �2(x1) . . . �n(x1)
�1(x2) �2(x2) . . . �n(x2)

...
�1(xn) �2(xn) . . . �n(xn)

1

CCCA
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Kringing example
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Regularized Kringing

We can use a regularized LSQ if we want to control the variation in w.

Consider a revised error function

E 0 = ED(w) + �Ew (w)

say

E 0 =
1

2

X

i

(yi � wT�(xi ))
2 +

�

2
wTw

which is minimized by
w = (�+ �T�)�1�T~y

as an example of how you can tweak the optimization / approximation
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Summary

Model based and data driven interpolation / approximation

Basic Methods (Linear)

Spline based interpolation

Uni- and Multi-Variate Approaches

Stochastic Models

Next time functional interpolation & approximation
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