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Introduction

How do we model temporal “discrete” processes with associated uncertainty?

Lots of examples in robotics
Executing a plan
Modeling tra�c
Receiving packages for logistics

Basic coverage of the underlying theory
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Independent Trials

A set of possible outcomes X1,X2, . . . is given

Each outcome has an associated probability pk

The probability of a samples sequence is given by

P{(Xj0,Xj1, . . . ,Xjk)} = pj0pj1 · · · pjk
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Markov Chains – Introduction

The outcome of any trial dependent on the outcode of the directly precedings
trial only

Conditional Probability pjk : given Xj has occured at some trial the
probability of Xk at the next trial

ak is the probability of Xk at the initial trial

I.e.:
P{(Xj ,Xk)} = akpjk

P{(Xj ,Xk ,Xl)} = ajpjkpkl
P{(Xj0,Xj1, . . . ,Xjk)} = aj0pj1 · · · pjk
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Example – Random Walk

How would you model a random walk?

Events: {. . . ,�3,�2,�1, 0, 1, 2, 3, . . .}
pij = 0 if |j � k | > 1

pij =
1

2
for |i � j | = 1
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Formalizing things

The chain is in a state Xt at time t.

The state space of a chain is the value X can take on, i.e.,
S = {1, 2, 3, 4, 5, 6}. Let the size of S be N (possibly infinite)

A trajectory of a chain is the set of values of X over time, say X0,X1,X2, . . .
The trajectory is the “path” through a chain.

The Markov Property implies that the future state/trajectory only depends
upon the current state, i.e.:

P(Xt+1 = s|Xt = st ,Xt�1 = st�1, . . . ,X0 = s0) = P(Xt+1 = s|Xt = st)

A sequence of discrete events random variables can be considered a Markov
chain if it satisfies the above property
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Transition matrix

We have already seen multiple transition diagrams as shown below for San
Diego weather

sunny0.9 overcast
0.1
0.7

0.3

We can capture the same information in a transition matrix – (S ⇥ S) that
details the transitions between states

✓
0.9 0.1
0.7 0.3

◆

The transition matrix is one of the most important tools for analyzing
Markov Chains
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Transition Matrix

The transition matrix is frequently denoted P = (pij)

In the transition matrix P:
the ROW represent NOW or FROM (Xt)
the COLUMNS present NEXT or TO (Xt+1)
an entry (i,j) is the CONDITIONAL probability that NEXT (j) is happening
given that NOW (i). Expressed as

pij = P(Xt+1|Xt)

Square (N ⇥ N) matrix
Rows sum to 1
Columns do not sum to 1
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Initial state

The Markov chair also has an initial state X0 which is a distribution over
possible start states

The initial distirbution is represented by the earlier mentioned ai
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Markov chains

x1 x2 x3 x4

x1 x2 x3 x4
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Hidden Markov Model

zn�1 zn zn+1

xn�1 xn xn+1

z1 z2

x1 x2
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Modelling of HMM’s

We can model the transition probabilities as a table

Ajk = p(znk = 1|zn�1,j = 1)

The conditionals are then (with a 1-out-of-K coding)

p(zn|zn�1,A) =
KY

k=1

KY

j=1

A
zn�1,j znk
jk

The per element probability is expressed by ⇡k = p(z1k = 1)

p(z1|⇡) =
KY

k=1

⇡z1k
k

with
P

k ⇡k = 1
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Illustration of HMM

k = 1

k = 2

k = 3

n� 2 n� 1 n n + 1

A11 A11 A11

A33 A33 A33
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Maximum likelihood for the HMM

If we observe a set of data X = {x1, . . . , xN} we can estimate the parameters
using ML

p(X |✓) =
Y

Z

p(X ,Z |✓)

I.e. summation of paths through lattice

We can use EM as a strategy to find a solution

E-Step: Estimation of p(Z |X , ✓old)

M-Step: Maximize over ✓ to optimize
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ML solution to HMM

Define

Q(✓, ✓old) =
X

Z

p(Z |X , ✓old) ln p(X ,Z |✓)

�(zn) = p(zn|X , ✓old)

�(znk) = E [znk ] =
X

z

�(z)znk

⇠(zn�1, zn) = p(zn�1, zn|X , ✓old)

⇠(zn�1,j , znk) =
X

z

�(z)zn�1,jznk
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ML solution to HMM

The quantities can be computed

⇡k =
�(z1k)PK
j=1

�(z1j)

Ajk =

PN
n=2

⇠(zn�1,j , znk)PK
l=1

PN
n=2

⇠(zn�1,j , znl)

Assume p(x |�k) = N(x |µk ,⌃k) so that

µk =

P
n �(znk)xnP
n �(znk)

⌃k =

P
n �(znk)(xn � µk)(xn � µk)TP

n �(znk)

How do we e�ciently compute �(znk)?
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Forward-Backward / Baum-Welch

How can we e�ciently compute �() and ⇠(., .)?

Remember the HMM is a tree model

Using message passing we can compute the model e�ciently (remember
earlier discussion?)

We have two parts to the message passing forward and backward for any
component

We have

�(zn) = p(zn|X ) =
P(X |zn)p(zn)

p(X )

From earlier we have

�(zn) =
↵(zn)�(zn)

p(X )
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Forward-Backward

We can then compute

↵(zn) = p(xn|zn)
X

zn�1

↵(zn�1)p(zn|zn�1)

�(zn) =
X

zn+1

�(zn+1)p(xn+1|zn+1)p(zn+1|zn)

p(X ) =
X

zn

↵(zn)�(zn)

⇠(zn�1, zn) =
↵(zn�1)p(xn|zn)p(zn|zn�1)�(zn)

p(X )
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Sum-product algorithms for the HMM

Given the HMM is a tree structure

Use of sum-product rule to compute marginals

We can derive a simple factor graph for the tree
�  n

g1 gn�1 gn

z1 zn�1 zn

x1 xn�1 xn
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Sum-product algorithms for the HMM

We can then compute the factors

h(z1) = p(z1)p(x1|z1)
fn(zn�1, zn) = p(zn|zn�1)p(xn|zn)

The update factors µfn!zn(zn) can be used to derive message passive with
↵(.) and �(.)

H. I. Christensen (UCSD) Math for Robotics Nov 2023 20 / 33

Viterbi Algorithm

Using the message passing framework it is possible to determine the most
likely solution (ie best recognition)

Intuitively

Keep only track of the most likely / probably path through the graph

At any time there are only K possible paths to maintain

Basically a greedy evaluation of the best solution
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Small example of gesture tracking

Tracking of hands using an HMM to interpret track

Pre-process images to generate tracks
Color segmentation
Track regions using Kalman Filter
Interpret tracks using HMM
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Pre-process architecture

RGB image
Color 

segmentation

Binary image

Downscale

Density map
Thresholding 

and 
Connecting

N largest 
blobs

Tracker

Head, left 
and right hand 

blobs

Color 
model

 

Lookup 
table

Histogram 
generation

Adapted 
lookup table

Initial HSV 
thresholds

Camera
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Basic idea
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Tracking
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Motion Patterns

Attention Idle Forward Back Left Right

Turn left Turn right Faster Slower Stop
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Evaluation

Acquired 2230 image sequences

Covering 5 people in a normal living room

1115 used for training

1115 sequences were used for evaluation

Capture of position and velocity data
Rec Rates Position Velocity Combined

Result [%] 96.6 88.7 99.5
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Example Timing

Phase Time/frame[ms]

Image Transfer 4.3
Segmentation 0.6
Density Est 2.1
Connect Comp 2.1
Kalman Filter 0.3
HMM 21.0
Total 30.4
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Markov Decision Processes

Not all processes are passive.

In some cases you can introduce actions that drive changes in states

In robotics a popular class of such problems are Markov Decision Processes
(MDP)

Consider a 4-tuple
(S ,A,Pa,Ra) where
S is the set of possible states
A is the set of possible actions, term the action space
Pa(s, s 0) = P(Xt+1 = s 0|Xt = s, at = a) is the probability action a in state s
will result in reaching state s’ at time t+1
Ra(s, s 0) is an immediate reward received from transition from s to s’ due to
action a

H. I. Christensen (UCSD) Math for Robotics Nov 2023 29 / 33



MDP example
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MDP Objective

The goal of the MDP is to find a good policy for a decision maker

The policy ⇡(s) specifies the optimal action in each state and the resulting
execution is a Markov chain

Objective is to choose a policy ⇡ that maximizes the cummulative reward,
typically with a discount factor, i.e.

E

"
X

t

�tRat (st , s+t+1)

#

where � is a discount factor 0  �  1 typically close to 1. A lower discount
factor will encourage actions earlier
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Algorithms

The MDP can be solved using linear programming
The optimal policy can be found using value function iteration.

1 Update Value: V (s) =
P

s0 P⇡(s, s0)(R⇡(s, s0) + �V (s0))
2 Policy update: ⇡(s) = argmaxa

�P
s0 P⇡(s, s0)(R⇡(s, s0) + �V (s0))

 

If the reward function is unknown this is an RL problem
Q(s, a) =

P
s0 Pa(s, s 0)(Ra(s, s 0) + �V (s 0))

Collecting (s, a, s 0) triplets allow optimization and estimation of Q (so also as
Q-learning)
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Summary

Many types of time sequences can be described as a Markov chain or a
Hidden Markov Model (HMM)

The underlying theory is simple to understand

You can describe the model as a graph / tree structure

It is possible to capture the model with a transition matrix and an initial
distirbution

It is possible to learn / adapt the probabilities over time

Widely used for temporal processes such as gestures, pose analysis,
navigation, ...

Numerous toolkits available for analysis and learning models.
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