CSE276C - Markov Chains

Henrik I. Christensen

Computer Science and Engineering
University of California, San Diego

November 2023

Introduction

- How do we model temporal "discrete" processes with associated uncertainty?
- Lots of examples in robotics
- Executing a plan
- Modeling traffic
- Receiving packages for logistics
- Basic coverage of the underlying theory

Independent Trials

- A set of possible outcomes X_{1}, X_{2}, \ldots is given
- Each outcome has an associated probability p_{k}
- The probability of a samples sequence is given by

$$
P\left\{\left(X_{j 0}, X_{j 1}, \ldots, X_{j k}\right)\right\}=p_{j 0} p_{j 1} \cdots p_{j k}
$$

Markov Chains - Introduction

- The outcome of any trial dependent on the outcode of the directly precedings trial only
- Conditional Probability $p_{j k}$: given X_{j} has occured at some trial the probability of X_{k} at the next trial
- a_{k} is the probability of X_{k} at the initial trial
- I.e.:

$$
\begin{aligned}
P\left\{\left(X_{j}, X_{k}\right)\right\} & =a_{k} p_{j k} \\
P\left\{\left(X_{j}, X_{k}, X_{l}\right)\right\} & =a_{j} p_{j k} p_{k l} \\
P\left\{\left(X_{j 0}, X_{j 1}, \ldots, X_{j k}\right)\right\} & =a_{j 0} p_{j 1} \cdots p_{j k}
\end{aligned}
$$

Example - Random Walk

- How would you model a random walk?

Example - Random Walk

- How would you model a random walk?
- Events: $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
- $p_{i j}=0$ if $|j-k|>1$
- $p_{i j}=\frac{1}{2}$ for $|i-j|=1$

Formalizing things

- The chain is in a state X_{t} at time t.
- The state space of a chain is the value X can take on, i.e., $S=\{1,2,3,4,5,6\}$. Let the size of S be N (possibly infinite)
- A trajectory of a chain is the set of values of X over time, say $X_{0}, X_{1}, X_{2}, \ldots$ The trajectory is the "path" through a chain.
- The Markov Property implies that the future state/trajectory only depends upon the current state, i.e.:

$$
P\left(X_{t+1}=s \mid X_{t}=s_{t}, X_{t-1}=s_{t-1}, \ldots, X_{0}=s_{0}\right)=P\left(X_{t+1}=s \mid X_{t}=s_{t}\right)
$$

- A sequence of discrete events random variables can be considered a Markov chain if it satisfies the above property

Transition matrix

- We have already seen multiple transition diagrams as shown below for San Diego weather

- We can capture the same information in a transition matrix - $(S \times S)$ that details the transitions between states

$$
\left(\begin{array}{ll}
0.9 & 0.1 \\
0.7 & 0.3
\end{array}\right)
$$

- The transition matrix is one of the most important tools for analyzing Markov Chains

Transition Matrix

- The transition matrix is frequently denoted $P=\left(p_{i j}\right)$
- In the transition matrix P:
- the ROW represent NOW or FROM $\left(X_{t}\right)$
- the COLUMNS present NEXT or TO $\left(X_{t+1}\right)$
- an entry (i, j) is the CONDITIONAL probability that NEXT (j) is happening given that NOW (i). Expressed as

$$
p_{i j}=P\left(X_{t+1} \mid X_{t}\right)
$$

- Square $(N \times N)$ matrix
- Rows sum to 1
- Columns do not sum to 1

Initial state

- The Markov chair also has an initial state X_{0} which is a distribution over possible start states
- The initial distirbution is represented by the earlier mentioned a_{i}

Markov chains

Hidden Markov Model

Modelling of HMM's

- We can model the transition probabilities as a table

$$
A_{j k}=p\left(z_{n k}=1 \mid z_{n-1, j}=1\right)
$$

- The conditionals are then (with a 1-out-of-K coding)

$$
p\left(z_{n} \mid z_{n-1}, A\right)=\prod_{k=1}^{K} \prod_{j=1}^{K} A_{j k}^{z_{n-1, j} z_{n k}}
$$

- The per element probability is expressed by $\pi_{k}=p\left(z_{1 k}=1\right)$

$$
p\left(z_{1} \mid \pi\right)=\prod_{k=1}^{K} \pi_{k}^{z_{1 k}}
$$

with $\sum_{k} \pi_{k}=1$

Illustration of HMM

Maximum likelihood for the HMM

- If we observe a set of data $X=\left\{x_{1}, \ldots, x_{N}\right\}$ we can estimate the parameters using ML

$$
p(X \mid \theta)=\prod_{Z} p(X, Z \mid \theta)
$$

- l.e. summation of paths through lattice
- We can use EM as a strategy to find a solution
- E-Step: Estimation of $p\left(Z \mid X, \theta^{\text {old }}\right)$
- M-Step: Maximize over θ to optimize

ML solution to HMM

- Define

$$
\begin{aligned}
Q\left(\theta, \theta^{\text {old }}\right) & =\sum_{Z} p\left(Z \mid X, \theta^{\text {old }}\right) \ln p(X, Z \mid \theta) \\
\gamma\left(z_{n}\right) & =p\left(z_{n} \mid X, \theta^{\text {old }}\right) \\
\gamma\left(z_{n k}\right) & =E\left[z_{n k}\right]=\sum_{z} \gamma(z) z_{n k} \\
\xi\left(z_{n-1}, z_{n}\right) & =p\left(z_{n-1}, z_{n} \mid X, \theta^{\text {old }}\right) \\
\xi\left(z_{n-1, j}, z_{n k}\right) & =\sum_{z} \gamma(z) z_{n-1, j} z_{n k}
\end{aligned}
$$

ML solution to HMM

- The quantities can be computed

$$
\begin{aligned}
\pi_{k} & =\frac{\gamma\left(z_{1 k}\right)}{\sum_{j=1}^{K} \gamma\left(z_{1 j}\right)} \\
A_{j k} & =\frac{\sum_{n=2}^{N} \xi\left(z_{n-1, j}, z_{n k}\right)}{\sum_{l=1}^{K} \sum_{n=2}^{N} \xi\left(z_{n-1, j}, z_{n l}\right)}
\end{aligned}
$$

- Assume $p\left(x \mid \phi_{k}\right)=N\left(x \mid \mu_{k}, \Sigma_{k}\right)$ so that

$$
\begin{aligned}
\mu_{k} & =\frac{\sum_{n} \gamma\left(z_{n k}\right) x_{n}}{\sum_{n} \gamma\left(z_{n k}\right)} \\
\Sigma_{k} & =\frac{\sum_{n} \gamma\left(z_{n k}\right)\left(x_{n}-\mu_{k}\right)\left(x_{n}-\mu_{k}\right)^{T}}{\sum_{n} \gamma\left(z_{n k}\right)}
\end{aligned}
$$

- How do we efficiently compute $\gamma\left(z_{n k}\right)$?

Forward-Backward / Baum-Welch

- How can we efficiently compute $\gamma()$ and $\xi(.,$.$) ?$
- Remember the HMM is a tree model
- Using message passing we can compute the model efficiently (remember earlier discussion?)
- We have two parts to the message passing forward and backward for any component
- We have

$$
\gamma\left(z_{n}\right)=p\left(z_{n} \mid X\right)=\frac{P\left(X \mid z_{n}\right) p\left(z_{n}\right)}{p(X)}
$$

- From earlier we have

$$
\gamma\left(z_{n}\right)=\frac{\alpha\left(z_{n}\right) \beta\left(z_{n}\right)}{p(X)}
$$

Forward-Backward

- We can then compute

$$
\begin{aligned}
\alpha\left(z_{n}\right) & =p\left(x_{n} \mid z_{n}\right) \sum_{z_{n-1}} \alpha\left(z_{n-1}\right) p\left(z_{n} \mid z_{n-1}\right) \\
\beta\left(z_{n}\right) & =\sum_{z_{n+1}} \beta\left(z_{n+1}\right) p\left(x_{n+1} \mid z_{n+1}\right) p\left(z_{n+1} \mid z_{n}\right) \\
p(X) & =\sum_{z_{n}} \alpha\left(z_{n}\right) \beta\left(z_{n}\right) \\
\xi\left(z_{n-1}, z_{n}\right) & =\frac{\alpha\left(z_{n-1}\right) p\left(x_{n} \mid z_{n}\right) p\left(z_{n} \mid z_{n-1}\right) \beta\left(z_{n}\right)}{p(X)}
\end{aligned}
$$

Sum-product algorithms for the HMM

- Given the HMM is a tree structure
- Use of sum-product rule to compute marginals
- We can derive a simple factor graph for the tree

Sum-product algorithms for the HMM

- We can then compute the factors

$$
\begin{aligned}
h\left(z_{1}\right) & =p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right) \\
f_{n}\left(z_{n-1}, z_{n}\right) & =p\left(z_{n} \mid z_{n-1}\right) p\left(x_{n} \mid z_{n}\right)
\end{aligned}
$$

- The update factors $\mu_{f_{n} \rightarrow z_{n}}\left(z_{n}\right)$ can be used to derive message passive with $\alpha($.$) and \beta($.

Viterbi Algorithm

- Using the message passing framework it is possible to determine the most likely solution (ie best recognition)
- Intuitively
- Keep only track of the most likely / probably path through the graph
- At any time there are only K possible paths to maintain
- Basically a greedy evaluation of the best solution

Small example of gesture tracking

- Tracking of hands using an HMM to interpret track
- Pre-process images to generate tracks
- Color segmentation
- Track regions using Kalman Filter
- Interpret tracks using HMM

Pre-process architecture

Basic idea

Tracking

Motion Patterns

Evaluation

- Acquired 2230 image sequences
- Covering 5 people in a normal living room
- 1115 used for training
- 1115 sequences were used for evaluation
- Capture of position and velocity data

Rec Rates	Position	Velocity	Combined
Result [\%]	96.6	88.7	99.5

Example Timing

Phase	Time/frame[ms]
Image Transfer	4.3
Segmentation	0.6
Density Est	2.1
Connect Comp	2.1
Kalman Filter	0.3
HMM	21.0
Total	30.4

Markov Decision Processes

- Not all processes are passive.
- In some cases you can introduce actions that drive changes in states
- In robotics a popular class of such problems are Markov Decision Processes (MDP)
- Consider a 4-tuple
- $\left(S, A, P_{a}, R_{a}\right)$ where
- S is the set of possible states
- A is the set of possible actions, term the action space
- $P_{\mathrm{a}}\left(s, s^{\prime}\right)=P\left(X_{t+1}=s^{\prime} \mid X_{t}=s, a_{t}=a\right)$ is the probability action a in state s will result in reaching state s' at time $\mathrm{t}+1$
- $R_{a}\left(s, s^{\prime}\right)$ is an immediate reward received from transition from s to s^{\prime} due to action a

MDP example

MDP Objective

- The goal of the MDP is to find a good policy for a decision maker
- The policy $\pi(s)$ specifies the optimal action in each state and the resulting execution is a Markov chain
- Objective is to choose a policy π that maximizes the cummulative reward, typically with a discount factor, i.e.

$$
E\left[\sum_{t} \gamma^{t} R_{a_{t}}\left(s_{t}, s+_{t+1}\right)\right]
$$

- where γ is a discount factor $0 \leq \gamma \leq 1$ typically close to 1 . A lower discount factor will encourage actions earlier

Algorithms

- The MDP can be solved using linear programming
- The optimal policy can be found using value function iteration.
(1) Update Value: $V(s)=\sum_{s^{\prime}} P_{\pi}\left(s, s^{\prime}\right)\left(R_{\pi}\left(s, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right)$
(2) Policy update: $\pi(s)=\arg \max _{a}\left\{\sum_{s^{\prime}} P_{\pi}\left(s, s^{\prime}\right)\left(R_{\pi}\left(s, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right)\right\}$
- If the reward function is unknown this is an RL problem
- $Q(s, a)=\sum_{s^{\prime}} P_{a}\left(s, s^{\prime}\right)\left(R_{a}\left(s, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right)$
- Collecting (s, a, s^{\prime}) triplets allow optimization and estimation of Q (so also as Q-learning)

Summary

- Many types of time sequences can be described as a Markov chain or a Hidden Markov Model (HMM)
- The underlying theory is simple to understand
- You can describe the model as a graph / tree structure
- It is possible to capture the model with a transition matrix and an initial distirbution
- It is possible to learn / adapt the probabilities over time
- Widely used for temporal processes such as gestures, pose analysis, navigation, ...
- Numerous toolkits available for analysis and learning models.

