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Introduction

@ How do we model temporal “discrete” processes with associated uncertainty?
@ Lots of examples in robotics

o Executing a plan
e Modeling traffic
e Receiving packages for logistics

@ Basic coverage of the underlying theory
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Independent Trials

@ A set of possible outcomes Xi, X5, ... is given
@ Each outcome has an associated probability px

@ The probability of a samples sequence is given by

P{(Xjo, Xj1,--., Xjk)} = pjopj1-- - Pjk
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Markov Chains — Introduction

@ The outcome of any trial dependent on the outcode of the directly precedings
trial only

e Conditional Probability pj: given X; has occured at some trial the
probability of X) at the next trial

@ ay is the probability of Xj at the initial trial

o le.:

P{(X;, Xk)} = akpjk
P{(Xjaxk,X/)} = ajPjkPki
P{()<j0,)<j]_,...,)<jk)} = ajOle"'ij
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Example — Random Walk

@ How would you model a random walk?
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Example — Random Walk

How would you model a random walk?
Events: {...,-3,-2,-1,0,1,2,3,...}
pi=0if |j —k|>1

py =3 for|i—jl=1

1 1

o 3
005050000
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Formalizing things

The chain is in a state X; at time t.

The state space of a chain is the value X can take on, i.e.,
5$={1,2,3,4,5,6}. Let the size of S be N (possibly infinite)

A trajectory of a chain is the set of values of X over time, say Xp, X1, X, ...
The trajectory is the “path” through a chain.

The Markov Property implies that the future state/trajectory only depends
upon the current state, i.e.:

P(Xt+1 = 5|Xt = 5¢, Xe—1 = St—1,..., X0 = 50) = 'D(Xt+1 = 5|Xt = St)

@ A sequence of discrete events random variables can be considered a Markov
chain if it satisfies the above property
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Transition matrix

@ We have already seen multiple transition diagrams as shown below for San

Diego weather

@ We can capture the same information in a transition matrix — (S x S) that
details the transitions between states

0.9 0.1
0.7 0.3
@ The transition matrix is one of the most important tools for analyzing
Markov Chains
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Transition Matrix

@ The transition matrix is frequently denoted P = (pj;)

@ In the transition matrix P:

the ROW represent NOW or FROM (X;)

the COLUMNS present NEXT or TO (X¢41)

an entry (i,j) is the CONDITIONAL probability that NEXT (j) is happening
given that NOW (i). Expressed as

pij = P(Xe11]X:)

Square (N x N) matrix
Rows sum to 1
Columns do not sum to 1
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Initial state

@ The Markov chair also has an initial state Xy which is a distribution over
possible start states

@ The initial distirbution is represented by the earlier mentioned a;
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Markov chains

X1 X2 X3 X4
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Hidden Markov Model

VAl Zo Zp—1 Zy Zp41

X1 X2
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Modelling of HMM's

@ We can model the transition probabilities as a table
Ak = p(zok = 1]zp—1j = 1)
@ The conditionals are then (with a 1-out-of-K coding)
K K
p(Zn|Zn—17A) _ H HA;:r—l,jan
k=1 j=1

@ The per element probability is expressed by 7y = p(z1x = 1)

K
— Z1k
parl) = [[
k=1
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[[lustration of HMM

n—2 n—1 n n+1
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Maximum likelihood for the HMM

@ If we observe a set of data X = {x1,...,xy} we can estimate the parameters
using ML

p(X10) = [ [ p(X, Z10)
V4

l.e. summation of paths through lattice
We can use EM as a strategy to find a solution
E-Step: Estimation of p(Z|X,#°)

M-Step: Maximize over 6 to optimize
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ML solution to HMM

@ Define

Q(0,6°7) = > p(Z|X,6°)Inp(X, Z|0)

Z
’Y(Zn) — p(Z,,|X, GOId)
V(an) = E[an] = Z V(Z)Z"k
f(Zn_l,Z,-,) = P(Zn—lazn|Xa90ld)

f(Zn—l,j,an) - ZV(Z)Z”—LJ.Z"I(
z
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ML solution to HMM

@ The quantities can be computed

v(z1k)
Tk =K oy
Zj:l v(21)
Znszf(Zn—l,j,an)
Ajk

K <N
2 i=1 2n=28(2n-1,j, Zn1)
@ Assume p(x|pk) = N(x|uk, k) so that
_ Zn ")/(an)Xn
e = =L
Zn ,Y(an)

>0 V(Z0i) (X — i) (X — i) T
>0 ¥(Z0k)

e How do we efficiently compute vy(z,x)?

2k
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Forward-Backward / Baum-Welch

@ How can we efficiently compute () and &(.,.)?
@ Remember the HMM is a tree model

@ Using message passing we can compute the model efficiently (remember
earlier discussion?)

@ We have two parts to the message passing forward and backward for any

component

e We have P(X|2)p(2))
Zn )P\ Zn
Y(zn) = p(z,|X) =
(20) = plan|X) = =555
@ From earlier we have
"}/(Z ) — O[(ZH)B(Z")
p(X)
H. I. Christensen (UCSD) Math for Robotics Nov 2023

16 /33

17/33



Forward-Backward

@ We can then compute

Oé(Z,,) = p(Xn|Zn) ZQ(Zn—l)p(anzn—l)

Zn—1

B(Zn) = Zﬁ(zn—i—l)p(xn—i-l|Zn+1)p(zn+1|Zn)

Zpn+1

p(X) = > alz)b(z)
a(zn—l)p(xn|Zn)p(znlzn—1)ﬁ(zn)

E(Zn—lazn) = p(X)
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Sum-product algorithms for the HMM

@ Given the HMM is a tree structure
@ Use of sum-product rule to compute marginals

@ We can derive a simple factor graph for the tree

Y Z1 Zp—1 ¥ Zp,
n
—( — - () = ...
g1 In—1 gn
X1 Xn—1 Xn
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Sum-product algorithms for the HMM

@ We can then compute the factors

h(z1) = p(z1)p(xa|z1)
fn(zn—lyzn) p(z,,|z,,_1)p(x,,|z,,)

@ The update factors jif,,, (z,) can be used to derive message passive with

a(.) and B(.)
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Viterbi Algorithm

Using the message passing framework it is possible to determine the most
likely solution (ie best recognition)

Intuitively
Keep only track of the most likely / probably path through the graph
At any time there are only K possible paths to maintain

Basically a greedy evaluation of the best solution
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Small example of gesture tracking

@ Tracking of hands using an HMM to interpret track
@ Pre-process images to generate tracks
e Color segmentation

e Track regions using Kalman Filter
o Interpret tracks using HMM
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Pre-process architecture

RGB image Binary image Density map

Col Thresholding
. olor Downscale
segmentation

and
Connecting

ﬁ Lookup @ N largest

table blobs
lookup table

Initial HSV

thresholds > Color m Tracker

model

L Histogrz_im Head, left
generation and right hand
blobs
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Basic idea
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Tracking

Motion

o8 | ! I \ L b |~ = Threshold

Frame
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Motion Patterns
/X A\

Attention Idle Forward Back Left Right

Turn left | Turnright| Faster Slower Stop
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Evaluation

Acquired 2230 image sequences
Covering 5 people in a normal living room

°
°

@ 1115 used for training

@ 1115 sequences were used for evaluation
°

Capture of position and velocity data
| Rec Rates | Position | Velocity | Combined |

[Result %] | 96.6 | 887 | 995 |
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Example Timing

| Phase | Time/frame[ms] |
Image Transfer 4.3
Segmentation 0.6
Density Est 2.1
Connect Comp 2.1
Kalman Filter 0.3
HMM 21.0
Total 30.4
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Markov Decision Processes

Not all processes are passive.

In some cases you can introduce actions that drive changes in states

In robotics a popular class of such problems are Markov Decision Processes
(MDP)

Consider a 4-tuple

e (S,A, Ps, R,) where

e S is the set of possible states

e A is the set of possible actions, term the action space

o P.(s,s") = P(Xex1 = 8’| Xt = s,ar = a) is the probability action a in state s
will result in reaching state s’ at time t+1

o R.(s,s’) is an immediate reward received from transition from s to s’ due to

action a
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MDP example
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MDP Objective

@ The goal of the MDP is to find a good policy for a decision maker

@ The policy m(s) specifies the optimal action in each state and the resulting
execution is a Markov chain

@ Objective is to choose a policy 7w that maximizes the cummulative reward,
typically with a discount factor, i.e.

E [Z Y Ra, (S, 5+t41)
t

@ where 7 is a discount factor 0 < v < 1 typically close to 1. A lower discount
factor will encourage actions earlier
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Algorithms

@ The MDP can be solved using linear programming
e The optimal policy can be found using value function iteration.

@ Update Value: V(s) =3, Px(s,s")(Rx(s,s") +~vV(s"))
@ Policy update: m(s) = argmax, {3 . Px(s,s')(Rx(s,s") + vV(s'))}

@ If the reward function is unknown this is an RL problem

o Q(s,a) =3, Pa(s,s")(Ra(s,s") + V("))
o Collecting (s, a, s’) triplets allow optimization and estimation of Q (so also as
Q-learning)
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@ Many types of time sequences can be described as a Markov chain or a
Hidden Markov Model (HMM)

@ The underlying theory is simple to understand
@ You can describe the model as a graph / tree structure

@ It is possible to capture the model with a transition matrix and an initial
distirbution

@ It is possible to learn / adapt the probabilities over time

Widely used for temporal processes such as gestures, pose analysis,
navigation, ...

@ Numerous toolkits available for analysis and learning models.
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