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Introduction

We can only touch on the basics, but valuable to have basic knowledge

Di↵erential Geometry is all about moving on a curve / manifold

Robotics is all about moving considering not only kinematics, but also
dynamics

What motion is possible in a particular space
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Basic Concepts

Tangent vector
A vector anchored at a point p
Set of possible vectors for p is termed
tangent space Tp
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Basic Concepts

Tangent Bundle
A space along with its tangent vectors
If Rn the underlying space and we have a
tangent space of Rn anchored at each of
the relevant points
Space is then Rn ⇥ Rn

So a tangent bundle for a circle would be
S1 ⇥ R1
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Basic Concepts

Vector Field
A function that maps a manifold to a tangent space
M ! T (M) and within it p ! vp 2 Tp

Frequently denoted V (p) or Vp

A classic question: does a manifold has a continuously changing vector field
that is non-zero?

The circle example with M = S1 is one such vector field
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Geometry of curves in R3

Consider parameterized curves ↵(t) = (x(t), y(t), z(t))

In general a curve ↵ is a mapping ↵ : I ! R3

I is an interval in R sometimes we will write it as (↵1(t),↵2(t),↵3(t))

In general (x(t), y(t), z(t)) are di↵erentiable

I.e., has derivatives of all orders throughout I
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A simple 2D example

↵1(✓) = (r cos(✓), r sin(✓))

✓ 2 [0, 2⇡] = I OR

↵2(✓) = (r cos(2✓), r sin(2✓))

✓ 2 [0,⇡] = I

Di↵erent curves / parameterizations can have the same trace
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Simple 3D curve

↵(t) = (a cos(t), a sin(t), bt), with t 2 R
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Velocity vector & Arclength

The velocity vector of ↵ at time t is the tangent vector of R3 given by

↵0(t) = (↵0
1
(t),↵0

2
(t),↵0

3
(t))

This vector is obviously also the tangent

The speed of ↵ is v(t) = ||↵0(t)||
The arclength traversed between t0 and t1 is

Z t1

t0

v(t)dt

You can re-parameterize ↵(t) as �(s) where s is the arc-length, which is the
same as representing ↵ at unit speed
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Simple Example – Helix

Consider the helix: ↵(t) = (r cos(t), r sin(t), qt) then
Velocity: ↵0(t) = (�r sin(t), r cos(t), q)
Speed: v(t) =

p
r 2 + q2 = c a constant

Arc-length: s(t) =
R t
0
cdt = ct. Thus t(s) = s

c
Re-parameterized: �(s) = ↵( s

c ) = (r cos( s
c ), r sin(

s
c ), q

s
c )
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Arclength?

So does the integral

s(t) =

Z t1

t0

||↵0(t)||dt

always converge?

Some curves have infinite arclength (ex fractals - Koch Snowflake)
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Vector fields of �

We can define a set of vector fields for �
T = �0 the unit tangent field
N = T 0

||T 0|| the principal normal vector field
B = T ⇥ N called the bi-normal vector field of �

The quantity ||T 0|| is also named the curvature function K (s) = ||T 0(s)||
The triple (T,N,B) is called the Frenet Frame field of �
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Curvature

Let ↵ : I ! R3 be a curve parameterized by arclength

Curvature is then defined as ||↵00(s)|| = K (s)

↵0(s) – the tangent vector of s

↵00(s) – the change in the tangent vector

R(s) = 1/K (s) – is called the radius of curvature
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Simple examples

Straight line
↵(s) = us + v , u, v 2 R2

↵0(s) = u
↵00(s) = 0 ) ||↵00(s)|| = 0

Circle

↵(s) = (a cos(s/a), a sin(s/a)), s 2 [0, 2⇡a]
↵0(s) = (� sin(s/a), cos(s/a))
↵00(s) = (� cos(s/a)/a,� sin(s/a)/a) ) ||↵00(s)|| = 1/a
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Curvature examples

Cornu Spiral - K(s) = s

Generalized Cornu Spirals - K(s) -
Polynomial of s
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Normals

When ↵ is parameterized by arc length

↵0(s) · ↵0(s) = 1

From Vector Calculus
If f, g: I ! R3 and f (t) · g(t) = const for all t
then

f 0(t) · g(t) = �f (t) · g 0(t)

for f * f this is only true for f’(t) f(t) = 0

This implies that
↵00(s) · ↵0(s) = 0

or ↵00(s) is orthogonal to ↵0(s)

Its proportional to the normal of the curve
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Normals

↵0(s) = T (s) – Tangent Vector

||↵0(s)|| – arc length

↵00(s) = T 0(s) – normal direction

||↵00(s)|| – curvature

If ||↵00(s) 6= 0 then
↵00(s) = T 0(s) = K (s)N(s)
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Osculating Plane

Source: M. Ben-Chen,
Stanford

The local plane determined by the unit
tangent and the normal vectors - T(s) and
N(s) is call the osculating plane at s
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The Bi-normal Vector

The binormal is defined for K (s) 6= 0 by

B(s) = T (s)⇥ N(s)

The bi-normal defines the osculating plane

Source: R. Gardner, ETSU
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The Frenet Frame

Source: A. J. Hanson, LBL

The system {T (s),N(s),B(s)} for
an ortho-normal basis for R3 called
the Fernet Frame

The obvious question - How does it
change along a curve? I.e., what
are T’(s), N’(s), and B’(s)?
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T’(s)

We have already covered T’(s)

T 0(s) = K (s)N(s)

As it is in the direction of N(s) it is orthogonal to B(s) and T(s).
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N’(s)

We know that N(s) · N(s) = 1

From our earlier lemma (vector calculus) N 0(s) · N(s) = 0

We know N(s) · T (s) = 0 from the lemma N 0(s) · T (s) = �N(s) · T 0(s)

Given K (s) = N(s) · T 0(s)

It must be true that N 0(s) · T (s) = �K (s)
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Torsion

For the parameterized curve ↵ : I ! R3 the torsion of ↵ is defined by

⌧(s) = N 0(s) · B(s)

We can then express

N 0(s) = K (s)T (s) + ⌧(s)B(s)
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Curvature vs Torsion

Curvature indicates how much the normal changes in the direction of the
tangent

Torsion indicates how much the normal change in the direction orthogonal to
the osculating plane

Curvature is always positive, the torsion can be negative

Neither depend on the choice of parameterization
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B’(s)

We know that B(s) · B(s) = 1

From the lemma we know B 0(s) · B(s) = 0

We further know: B(s) · T (s) = 0 and B(s) · N(s) = 0

From the lemma:

B 0(s) · T (s) = �B(s) · T 0(s) = B(s) · K (s)N(s) = 0

We get
B 0(s) · N(s) = �B(s) · N 0(s) = �⌧(s)

and from this we have
B 0(s) = �⌧(s)N(s)
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The Frenet Formulas

T 0(s) = K (s)N(s)
N 0(s) = �K (s)T (s) +⌧(s)B(s)
B 0(s) = �⌧(s)N(s)

In Matrix Form
0

@
| | |

T 0(s) N 0(s) B 0(s)
| | |

1

A =

0

@
| | |

T (s) N(s) B(s)
| | |

1

A

0

@
0 K (s) 0

K (s) 0 �⌧(s)
0 ⌧(s) 0

1

A
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Example - Back to the helix

For: ↵(t) = (a cos(t), a sin(t), bt)

Re-parameterized: ↵(s) = (a cos(s/c), a sin(s/c), bs/c) where c =
p
a2 + b2

Curvature is then: K (s) = a
a2+b2

Torsion is then ⌧(s) = a2+b2

Note for this example both curvature and torsion are constants

H. I. Christensen (UCSD) Math for Robotics Nov 2023 27 / 41

Covariant Derivatives and Lie Brackets

Suppose V&W are two vector fields in Rn so that for each point p 2 Rn

V (p) and W (p) are vectors in Rn

The covariant derivative of W wrt V is

(rvW )(p) =
d

dt
W (p + tVp)|t=0

rvW measures the change in W as one moves along V

H. I. Christensen (UCSD) Math for Robotics Nov 2023 28 / 41



Examples - covariant derivatives

In R2 W(p) = (1,0) and V(p) = (0,1) forall p

The rvW = rwV = 0

For a circle in 2D, p = (x , y) 2 R2

W =
(x , y)p
x2 + y2

and V =
(�y , x)p
x2 + y2

Then rvW = vp
x2+y2

and of course rwV = 0
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A few things about covariant derivatives

rvW is an n-dimensional vector

rv (aW + bU) = arvW + brvU

rfV+gUW = frvW + gruW
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Lie Bracket

The Lie Bracket [V, W] of the two vector fields is defined to be

[V ,W ] = rVW �rWV

Basically measure flow in the directions of V, -V, W, -W

Lets illustrate this with a real robot example
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Parallel Parking

The configuration - (x , y , ✓)

The controls are (v ,�)

The controls are

ẋ = v cos� cos ✓
ẏ = v cos� sin ✓
✓̇ = v

l sin�

We can consider nominal motion
(1,�1) and (1,�2) as wheel
directions
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Parallel Parking - Cont

Two vector fields

Vi = Vi (x , y , ✓) = (cos�i cos ✓, cos�i sin ✓,
sin�i

l
)

Then

rV1
V2 = (r(cos�1 cos ✓)V2,r(cos�1 sin ✓)V2,r(

sin�1

l
)V 2)

skipping calculations

rV1
V 2 =

sin�1 cos�2

l
(� sin ✓, cos ✓, 0)

and similarly for the

[V1,V2] =
sin(�1 � �2)

l
(� sin ✓, cos ✓, 0)

So we can move perpendicular to the axis as long as (�1 � �2) 6= 0
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Moving to manifolds

Smooth Manifolds
A manifold is a set M with an associated one-to-one map � : U ! M from an
open subset U ⇢ Rm called a global chart or coordinate system of M

!
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Smooth Manifolds

A smooth manifold is a pair (M,A) where:
M is a set
A is a family of 1-1 charts: � : U ! M from some open subset U = U� ⇢ Rm

for M
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Di↵erentiable and smooth functions

f : U ⇢ Rn ! Rq

(y1, . . . , yq) = f (x1, . . . , xn)

f is of a class C r if f has continuous partial derivatives

@r1+...+rnyk
@x r1

1
. . . @x rnn

If r = 1, then f is smooth, the main focus in robotics
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Di↵eomorphism

When n = q
if f is 1-1, f and f �1 are both C r

) f is a C r -di↵eomorphism
Smooth di↵emorphisms are simply referred as di↵eomorphisms

Inverse Function Theorem:
f di↵eomorphism ) det(Jx f ) 6= 0
det(Jx f ) 6= 0 ) f is local di↵eomorphism in a neighborhood of x
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Example - Gaussian Distribution

The space of n-dimensional Gaussian distributions is a smooth manifold

Global chart: (µ,⌃) 2 Rn ⇥ P(n)
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Manifolds can generate multiple charts

The sphere
S2 = {(x , y , x), x2 + y2 + z2 = 1} has
multiple projections/charts

We can project from the North Pole, of a
point P = (x,y,z) given by

�(P) =

✓
x

1� z
,

y

1� z

◆

is a large coordinate system around the
south pole
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Manifolds requiring multiple chartss

The Moebius Strip

u 2 [0, 2⇡], v 2 [�1/2, 1/2]

0

@
cos(u)

�
1 + 1

2
v cos

�
u
2

��

sin(u)
�
1 + 1

2
v cos

�
u
2

��
1

2
v sin

�
u
2

�

1

A

2D Torus

(u, v) 2 [0, 2⇡]2,R >> r > 0

0

@
cos(u) (R + r cos(v))
sin(u) (R + r cos(v))

r sin(v)

1

A
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Summary

Covering basics of movement along curves

Many more derivations can be provided for movement on manifolds

Covering basic characteristics of curves and manifolds

Definition of the Frenet frame and associated characteristics

Brief coverage of covariant derivatives and Lie bracket
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