CSE276C - Differential Geometry

Henrik I. Christensen

Computer Science and Engineering University of California, San Diego

November 2023

Introduction

- We can only touch on the basics, but valuable to have basic knowledge
- Differential Geometry is all about moving on a curve / manifold
- Robotics is all about moving considering not only kinematics, but also dynamics
- What motion is possible in a particular space

Basic Concepts

- Tangent vector
- A vector anchored at a point p
- Set of possible vectors for p is termed tangent space T_{p}

Basic Concepts

- Tangent Bundle
- A space along with its tangent vectors
- If \mathbb{R}^{n} the underlying space and we have a tangent space of \mathbb{R}^{n} anchored at each of the relevant points
- Space is then $\mathbb{R}^{n} \times \mathbb{R}^{n}$
- So a tangent bundle for a circle would be $S^{1} \times \mathbb{R}^{1}$

Basic Concepts

- Vector Field
- A function that maps a manifold to a tangent space
- $M \rightarrow T(M)$ and within it $p \rightarrow v_{p} \in T_{p}$
- Frequently denoted $V(p)$ or V_{p}
- A classic question: does a manifold has a continuously changing vector field that is non-zero?

Basic Concepts

- Vector Field
- A function that maps a manifold to a tangent space
- $M \rightarrow T(M)$ and within it $p \rightarrow v_{p} \in T_{p}$
- Frequently denoted $V(p)$ or V_{p}
- A classic question: does a manifold has a continuously changing vector field that is non-zero?
- The circle example with $M=S^{1}$ is one such vector field

Geometry of curves in \mathbb{R}^{3}

- Consider parameterized curves $\alpha(t)=(x(t), y(t), z(t))$
- In general a curve α is a mapping $\alpha: I \rightarrow \mathbb{R}^{3}$
- I is an interval in \mathbb{R} sometimes we will write it as $\left(\alpha_{1}(t), \alpha_{2}(t), \alpha_{3}(t)\right)$
- In general $(x(t), y(t), z(t))$ are differentiable
- I.e., has derivatives of all orders throughout I

A simple 2D example

- $\alpha_{1}(\theta)=(r \cos (\theta), r \sin (\theta))$
- $\theta \in[0,2 \pi]=I$ OR
- $\alpha_{2}(\theta)=(r \cos (2 \theta), r \sin (2 \theta))$
- $\theta \in[0, \pi]=$ I

Different curves / parameterizations can have the same trace

Simple 3D curve

- $\alpha(t)=(a \cos (t), a \sin (t), b t)$, with $t \in \mathbb{R}$

Velocity vector \& Arclength

- The velocity vector of α at time t is the tangent vector of \mathbb{R}^{3} given by

$$
\alpha^{\prime}(t)=\left(\alpha_{1}^{\prime}(t), \alpha_{2}^{\prime}(t), \alpha_{3}^{\prime}(t)\right)
$$

- This vector is obviously also the tangent
- The speed of α is $v(t)=\left\|\alpha^{\prime}(t)\right\|$
- The arclength traversed between t_{0} and t_{1} is

$$
\int_{t_{0}}^{t_{1}} v(t) d t
$$

- You can re-parameterize $\alpha(t)$ as $\beta(s)$ where s is the arc-length, which is the same as representing α at unit speed

Simple Example - Helix

- Consider the helix: $\alpha(t)=(r \cos (t), r \sin (t), q t)$ then
- Velocity: $\alpha^{\prime}(t)=(-r \sin (t), r \cos (t), q)$
- Speed: $v(t)=\sqrt{r^{2}+q^{2}}=c$ a constant
- Arc-length: $s(t)=\int_{0}^{t} c d t=c t$. Thus $t(s)=\frac{s}{c}$
- Re-parameterized: $\beta(s)=\alpha\left(\frac{s}{c}\right)=\left(r \cos \left(\frac{s}{c}\right), r \sin \left(\frac{s}{c}\right), q \frac{s}{c}\right)$

Arclength?

- So does the integral

$$
s(t)=\int_{t_{0}}^{t_{1}}\left\|\alpha^{\prime}(t)\right\| d t
$$

always converge?

Arclength?

- So does the integral

$$
s(t)=\int_{t_{0}}^{t_{1}}\left\|\alpha^{\prime}(t)\right\| d t
$$

always converge?

- Some curves have infinite arclength (ex fractals - Koch Snowflake)

Vector fields of β

- We can define a set of vector fields for β
- $T=\beta^{\prime}$ the unit tangent field
- $N=\frac{T^{\prime}}{\Vdash^{T^{\prime} \|}}$ the principal normal vector field
- $B=T \times N$ called the bi-normal vector field of β
- The quantity $\left\|T^{\prime}\right\|$ is also named the curvature function $K(s)=\left\|T^{\prime}(s)\right\|$
- The triple (T, N, B) is called the Frenet Frame field of β

Curvature

- Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a curve parameterized by arclength
- Curvature is then defined as $\left\|\alpha^{\prime \prime}(s)\right\|=K(s)$
- $\alpha^{\prime}(s)$ - the tangent vector of s
- $\alpha^{\prime \prime}(s)$ - the change in the tangent vector
- $R(s)=1 / K(s)$ - is called the radius of curvature

Simple examples

- Straight line

$$
\begin{aligned}
\alpha(s) & =u s+v, u, v \in \mathbb{R}^{2} \\
\alpha^{\prime}(s) & =u \\
\alpha^{\prime \prime}(s) & =0 \Rightarrow\left\|\alpha^{\prime \prime}(s)\right\|=0
\end{aligned}
$$

- Circle

$$
\begin{aligned}
\alpha(s) & =(a \cos (s / a), a \sin (s / a)), s \in[0,2 \pi a] \\
\alpha^{\prime}(s) & =(-\sin (s / a), \cos (s / a)) \\
\alpha^{\prime \prime}(s) & =(-\cos (s / a) / a,-\sin (s / a) / a) \Rightarrow\left\|\alpha^{\prime \prime}(s)\right\|=1 / a
\end{aligned}
$$

Curvature examples

- Cornu Spiral - K(s) = s
- Generalized Cornu Spirals - K(s) Polynomial of s

Normals

- When α is parameterized by arc length

$$
\alpha^{\prime}(s) \cdot \alpha^{\prime}(s)=1
$$

- From Vector Calculus
- If $\mathrm{f}, \mathrm{g}: I \rightarrow \mathbb{R}^{3}$ and $f(t) \cdot g(t)=$ const for all t
- then

$$
f^{\prime}(t) \cdot g(t)=-f(t) \cdot g^{\prime}(t)
$$

for $f * f$ this is only true for $f^{\prime}(t) f(t)=0$

- This implies that

$$
\alpha^{\prime \prime}(s) \cdot \alpha^{\prime}(s)=0
$$

or $\alpha^{\prime \prime}(s)$ is orthogonal to $\alpha^{\prime}(s)$

- Its proportional to the normal of the curve

Normals

- $\alpha^{\prime}(s)=T(s)$ - Tangent Vector
- $\left\|\alpha^{\prime}(s)\right\|$ - arc length
- $\alpha^{\prime \prime}(s)=T^{\prime}(s)$ - normal direction
- $\left\|\alpha^{\prime \prime}(s)\right\|$ - curvature

- If $\| \alpha^{\prime \prime}(s) \neq 0$ then $\alpha^{\prime \prime}(s)=T^{\prime}(s)=K(s) N(s)$

Osculating Plane

- The local plane determined by the unit tangent and the normal vectors - $\mathrm{T}(\mathrm{s})$ and $\mathrm{N}(\mathrm{s})$ is call the osculating plane at s

Source: M. Ben-Chen, Stanford

The Bi-normal Vector

- The binormal is defined for $K(s) \neq 0$ by

$$
B(s)=T(s) \times N(s)
$$

- The bi-normal defines the osculating plane

Source: R. Gardner, ETSU

The Frenet Frame

Source: A. J. Hanson, LBL

- The system $\{T(s), N(s), B(s)\}$ for an ortho-normal basis for \mathbb{R}^{3} called the Fernet Frame
- The obvious question - How does it change along a curve? I.e., what are $\mathrm{T}^{\prime}(\mathrm{s}), \mathrm{N}^{\prime}(\mathrm{s})$, and $\mathrm{B}^{\prime}(\mathrm{s})$?
- We have already covered $T^{\prime}(s)$

$$
T^{\prime}(s)=K(s) N(s)
$$

- As it is in the direction of $N(s)$ it is orthogonal to $B(s)$ and $T(s)$.

N's)

- We know that $N(s) \cdot N(s)=1$
- From our earlier lemma (vector calculus) $N^{\prime}(s) \cdot N(s)=0$
- We know $N(s) \cdot T(s)=0$ from the lemma $N^{\prime}(s) \cdot T(s)=-N(s) \cdot T^{\prime}(s)$
- Given $K(s)=N(s) \cdot T^{\prime}(s)$
- It must be true that $N^{\prime}(s) \cdot T(s)=-K(s)$

Torsion

- For the parameterized curve $\alpha: I \rightarrow \mathbb{R}^{3}$ the torsion of α is defined by

$$
\tau(s)=N^{\prime}(s) \cdot B(s)
$$

- We can then express

$$
N^{\prime}(s)=K(s) T(s)+\tau(s) B(s)
$$

Curvature vs Torsion

- Curvature indicates how much the normal changes in the direction of the tangent
- Torsion indicates how much the normal change in the direction orthogonal to the osculating plane
- Curvature is always positive, the torsion can be negative
- Neither depend on the choice of parameterization
- We know that $B(s) \cdot B(s)=1$
- From the lemma we know $B^{\prime}(s) \cdot B(s)=0$
- We further know: $B(s) \cdot T(s)=0$ and $B(s) \cdot N(s)=0$
- From the lemma:

$$
B^{\prime}(s) \cdot T(s)=-B(s) \cdot T^{\prime}(s)=B(s) \cdot K(s) N(s)=0
$$

- We get

$$
B^{\prime}(s) \cdot N(s)=-B(s) \cdot N^{\prime}(s)=-\tau(s)
$$

and from this we have

$$
B^{\prime}(s)=-\tau(s) N(s)
$$

The Frenet Formulas

$$
\begin{array}{rlll}
T^{\prime}(s) & = & K(s) N(s) & \\
N^{\prime}(s) & = & -K(s) T(s) & \\
B^{\prime}(s) & = & & -\tau(s) N(s)
\end{array} \quad+\tau(s) B(s)
$$

In Matrix Form

$$
\left(\begin{array}{ccc}
\mid & \mid & \mid \\
T^{\prime}(s) & N^{\prime}(s) & B^{\prime}(s) \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
T(s) & N(s) & B(s) \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{ccc}
0 & K(s) & 0 \\
K(s) & 0 & -\tau(s) \\
0 & \tau(s) & 0
\end{array}\right)
$$

Example - Back to the helix

- For: $\alpha(t)=(a \cos (t), a \sin (t), b t)$
- Re-parameterized: $\alpha(s)=(a \cos (s / c), a \sin (s / c), b s / c)$ where $c=\sqrt{a^{2}+b^{2}}$
- Curvature is then: $K(s)=\frac{a}{a^{2}+b^{2}}$
- Torsion is then $\tau(s)=\frac{a^{2}+b^{2}}{}$
- Note for this example both curvature and torsion are constants

Covariant Derivatives and Lie Brackets

- Suppose $V \& W$ are two vector fields in \mathbb{R}^{n} so that for each point $p \in \mathbb{R}^{n}$ $V(p)$ and $W(p)$ are vectors in \mathbb{R}^{n}
- The covariant derivative of W wrt V is

$$
\left(\nabla_{\vee} W\right)(p)=\left.\frac{d}{d t} W\left(p+t V_{p}\right)\right|_{t=0}
$$

- $\nabla_{\vee} W$ measures the change in W as one moves along V

Examples - covariant derivatives

- $\ln \mathbb{R}^{2} W(p)=(1,0)$ and $V(p)=(0,1)$ forall p
- The $\nabla_{v} W=\nabla_{w} V=0$
- For a circle in 2D, $p=(x, y) \in \mathbb{R}^{2}$

$$
W=\frac{(x, y)}{\sqrt{x^{2}+y^{2}}} \text { and } V=\frac{(-y, x)}{\sqrt{x^{2}+y^{2}}}
$$

- Then $\nabla_{\nu} W=\frac{v}{\sqrt{x^{2}+y^{2}}}$ and of course $\nabla_{w} V=0$

A few things about covariant derivatives

- $\nabla_{\checkmark} W$ is an n-dimensional vector
- $\nabla_{v}(a W+b U)=a \nabla_{v} W+b \nabla_{v} U$
- $\nabla_{f V+g U} W=f \nabla_{v} W+g \nabla_{u} W$

Lie Bracket

- The Lie Bracket [V, W] of the two vector fields is defined to be

$$
[V, W]=\nabla_{V} W-\nabla_{W} V
$$

- Basically measure flow in the directions of $\mathrm{V},-\mathrm{V}, \mathrm{W},-\mathrm{W}$
- Lets illustrate this with a real robot example

Parallel Parking

- The configuration - (x, y, θ)
- The controls are (v, ϕ)
- The controls are

$$
\begin{aligned}
\dot{x} & =v \cos \phi \cos \theta \\
\dot{y} & =v \cos \phi \sin \theta \\
\dot{\theta} & =\frac{v}{l} \sin \phi
\end{aligned}
$$

- We can consider nominal motion $\left(1, \phi_{1}\right)$ and $\left(1, \phi_{2}\right)$ as wheel directions

Parallel Parking - Cont

- Two vector fields

$$
V_{i}=V_{i}(x, y, \theta)=\left(\cos \phi_{i} \cos \theta, \cos \phi_{i} \sin \theta, \frac{\sin \phi_{i}}{I}\right)
$$

- Then

$$
\nabla_{V_{1}} V_{2}=\left(\nabla\left(\cos \phi_{1} \cos \theta\right) V_{2}, \nabla\left(\cos \phi_{1} \sin \theta\right) V_{2}, \nabla\left(\frac{\sin \phi_{1}}{l}\right) V_{2}\right)
$$

skipping calculations

$$
\nabla_{V_{1}} V 2=\frac{\sin \phi_{1} \cos \phi_{2}}{l}(-\sin \theta, \cos \theta, 0)
$$

and similarly for the

$$
\left[V_{1}, V_{2}\right]=\frac{\sin \left(\phi_{1}-\phi_{2}\right)}{l}(-\sin \theta, \cos \theta, 0)
$$

So we can move perpendicular to the axis as long as $\left(\phi_{1}-\phi_{2}\right) \neq 0$

Moving to manifolds

- Smooth Manifolds
- A manifold is a set M with an associated one-to-one map $\phi: U \rightarrow M$ from an open subset $U \subset \mathbb{R}^{m}$ called a global chart or coordinate system of M

Smooth Manifolds

- A smooth manifold is a pair (M, \mathcal{A}) where:
- M is a set
- \mathcal{A} is a family of 1-1 charts: $\phi: U \rightarrow M$ from some open subset $U=U_{\phi} \subset \mathbb{R}^{m}$ for M

Differentiable and smooth functions

- $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}$

$$
\left(y_{1}, \ldots, y_{q}\right)=f\left(x_{1}, \ldots, x_{n}\right)
$$

- f is of a class C^{r} if f has continuous partial derivatives

$$
\frac{\partial^{r_{1}+\ldots+r_{n}} y_{k}}{\partial x_{1}^{r_{1}} \ldots \partial x_{n}^{r_{n}}}
$$

- If $r=\infty$, then f is smooth, the main focus in robotics

Diffeomorphism

- When $\mathrm{n}=\mathrm{q}$
- if f is $1-1, f$ and f^{-1} are both C^{r}
- $\Rightarrow f$ is a C^{r}-diffeomorphism
- Smooth diffemorphisms are simply referred as diffeomorphisms
- Inverse Function Theorem:
- f diffeomorphism $\Rightarrow \operatorname{det}\left(J_{x} f\right) \neq 0$
- $\operatorname{det}\left(J_{x} f\right) \neq 0 \Rightarrow f$ is local diffeomorphism in a neighborhood of x

Example - Gaussian Distribution

- The space of n-dimensional Gaussian distributions is a smooth manifold
- Global chart: $(\mu, \Sigma) \in \mathbb{R}^{n} \times \mathcal{P}(n)$

Manifolds can generate multiple charts

- The sphere
$\mathcal{S}^{2}=\left\{(x, y, x), x^{2}+y^{2}+z^{2}=1\right\}$ has multiple projections/charts
- We can project from the North Pole, of a point $P=(x, y, z)$ given by

$$
\phi(P)=\left(\frac{x}{1-z}, \frac{y}{1-z}\right)
$$

- is a large coordinate system around the south pole

Manifolds requiring multiple chartss

$$
\begin{gathered}
u \in[0,2 \pi], v \in[-1 / 2,1 / 2] \\
\left(\begin{array}{c}
\cos (u)\left(1+\frac{1}{2} v \cos \left(\frac{u}{2}\right)\right) \\
\sin (u)\left(1+\frac{1}{2} v \cos \left(\frac{u}{2}\right)\right) \\
\frac{1}{2} v \sin \left(\frac{u}{2}\right)
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
& (u, v) \in[0,2 \pi]^{2}, R \gg r>0 \\
& \left(\begin{array}{c}
\cos (u)(R+r \cos (v)) \\
\sin (u)(R+r \cos (v)) \\
r \sin (v)
\end{array}\right)
\end{aligned}
$$

Summary

- Covering basics of movement along curves
- Many more derivations can be provided for movement on manifolds
- Covering basic characteristics of curves and manifolds
- Definition of the Frenet frame and associated characteristics
- Brief coverage of covariant derivatives and Lie bracket

