

CSE276C - Differential Geometry

Henrik I. Christensen

Computer Science and Engineering University of California, San Diego

November 2023

Introduction

- We can only touch on the basics, but valuable to have basic knowledge
- Differential Geometry is all about moving on a curve / manifold
- Robotics is all about moving considering not only kinematics, but also dynamics
- What motion is possible in a particular space

Basic Concepts

Tangent vector

- A vector anchored at a point p
- Set of possible vectors for p is termed tangent space T_p

H. I.	Christensen	(UCSD)
	Childrensen	10000

Math for Robotics

Nov 2023

3 / 41

Basic Concepts

- Tangent Bundle
 - A space along with its tangent vectors
 - If Rⁿ the underlying space and we have a tangent space of Rⁿ anchored at each of the relevant points
 - Space is then $\mathbb{R}^n \times \mathbb{R}^n$
 - So a tangent bundle for a circle would be $S^1 imes \mathbb{R}^1$

Basic Concepts

Vector Field

- A function that maps a manifold to a tangent space
- $M \to T(M)$ and within it $p \to v_p \in T_p$
- Frequently denoted V(p) or V_p
- A classic question: does a manifold has a continuously changing vector field that is non-zero?

H. I. Christensen (UCSD)	Math for Robotics	Nov 2023 5 / 4	1
Basic Concepts			
• Vector Field • A function that map • $M \rightarrow T(M)$ and wi • Frequently denoted • A classic question: that is non-zero? • The circle example	os a manifold to a tangent space thin it $p o v_p \in T_p$ $V(p)$ or V_p does a manifold has a continuou with $M=S^1$ is one such vector	e usly changing vector field field	

Geometry of curves in \mathbb{R}^3

- In general a curve lpha is a mapping $lpha: I
 ightarrow \mathbb{R}^3$
- I is an interval in \mathbb{R} sometimes we will write it as $(\alpha_1(t), \alpha_2(t), \alpha_3(t))$
- In general (x(t), y(t), z(t)) are differentiable
- I.e., has derivatives of all orders throughout I

Simple 3D curve

Nov 2023

8 / 41

Velocity vector & Arclength

H. I. Christensen (UCSD)

• The velocity vector of α at time t is the tangent vector of \mathbb{R}^3 given by

Math for Robotics

$$\alpha'(t) = (\alpha'_1(t), \alpha'_2(t), \alpha'_3(t))$$

- This vector is obviously also the tangent
- The speed of α is $v(t) = ||\alpha'(t)||$
- The arclength traversed between t_0 and t_1 is

$$\int_{t_0}^{t_1} v(t) dt$$

 You can re-parameterize α(t) as β(s) where s is the arc-length, which is the same as representing α at unit speed

Simple Example – Helix

• Consider the helix: $\alpha(t) = (r \cos(t), r \sin(t), qt)$ then

- Velocity: $\alpha'(t) = (-r\sin(t), r\cos(t), q)$ Speed: $v(t) = \sqrt{r^2 + q^2} = c$ a constant

- Arc-length: $s(t) = \int_0^t cdt = ct$. Thus $t(s) = \frac{s}{c}$ Re-parameterized: $\beta(s) = \alpha(\frac{s}{c}) = (r\cos(\frac{s}{c}), r\sin(\frac{s}{c}), q\frac{s}{c})$

H. I. Christensen (UCSD)	Math for Robotics	Nov 2023	10 / 41
Arclength?			
• So does the integral always converge?	$s(t)=\int_{t_0}^{t_1} lpha'(t) dt$		

Arclength?

• So does the integral

$$s(t)=\int_{t_0}^{t_1}||lpha'(t)||dt|$$

always converge?

• Some curves have infinite arclength (ex fractals - Koch Snowflake)

Vector fields of β • We can define a set of vector fields for β • $T = \beta'$ the unit tangent field • $N = \frac{T'}{\ T'\ }$ the principal normal vector field • $B = T \times N$ called the bi-normal vector field of β	H. I. Christensen (UCSD)	Math for Robotics	Nov 2023	11/41
• We can define a set of vector fields for β • We can define a set of vector fields for β • $T = \beta'$ the unit tangent field • $N = \frac{T'}{ T' }$ the principal normal vector field • $B = T \times N$ called the bi-normal vector field of β				
 We can define a set of vector fields for β T = β' the unit tangent field N = T'/ T' the principal normal vector field B = T × N called the bi-normal vector field of β 	Vector fields of β			
• The quantity $ T' $ is also named the curvature function $K(s) = T'(s) $	• We can define a set o • $T = \beta'$ the unit ta • $N = \frac{T'}{ T' }$ the prin • $B = T \times N$ called • The quantity $ T' $ is	f vector fields for β ngent field cipal normal vector field the bi-normal vector field of β also named the curvature fur	f(s) = T'(s)	

• The triple (T,N,B) is called the Frenet Frame field of β

Curvature

- Let $\alpha: I \to \mathbb{R}^3$ be a curve parameterized by arclength
- Curvature is then defined as $||\alpha''(s)|| = K(s)$
- $\alpha'(s)$ the tangent vector of s
- $\alpha''(s)$ the change in the tangent vector
- R(s) = 1/K(s) is called the radius of curvature

H. I. Christensen (UCSD)	Math for Robotics	Nov 2023 13 / 41
Simple examples		
 Straight line Circle 	$egin{array}{rll} lpha(s)&=&us+v,\ u,v\in\mathbb{R}^2\ lpha'(s)&=&u\ lpha''(s)&=&0\Rightarrow lpha''(s) =0 \end{array}$	
$egin{array}{rll} lpha({f s})&=&\\ lpha'({f s})&=&\\ lpha''({f s})&=& \end{array}$	$(a\cos(s/a), a\sin(s/a)), s \in [0, 2a)$ $(-\sin(s/a), \cos(s/a))$ $(-\cos(s/a)/a, -\sin(s/a)/a) \Rightarrow $	τa] $ lpha''(s) =1/a$

Curvature examples

	H. I. Christensen (UCSD)	Math for Robotics	Nov 2023	15 / 41
Nor	male			
	IIIais			

• When α is parameterized by arc length

$$\alpha'(s) \cdot \alpha'(s) = 1$$

• From Vector Calculus

- If f, g: $I o \mathbb{R}^3$ and $f(t) \cdot g(t) = const$ for all t
- then

$$f'(t) \cdot g(t) = -f(t) \cdot g'(t)$$

for f * f this is only true for $f^{\prime}(t)\;f(t)=0$

• This implies that

$$\alpha''(s) \cdot \alpha'(s) = 0$$

or $\alpha''(s)$ is orthogonal to $\alpha'(s)$

• Its proportional to the normal of the curve

Normals

H. I. Christensen (UCSD)	Math for Robotics	Nov 2023	17 / 41
Osculating Plane			
	 The local plane detangent and the non N(s) is call the osci 	termined by the unit ormal vectors - T(s) ar culating plane at s	nd

Source: M. Ben-Chen, Stanford

The Bi-normal Vector

H. I. Christensen (UCSD)	Math for Robotics	Nov 2023	19 / 41
The Frenet Frame			
N1 N1 N1 N1 N1 N1 N2 T N2 T	 The system an ortho-not the Fernet F The obvious change alon are T'(s), N 	$\{T(s), N(s), B(s)\}$ formal basis for \mathbb{R}^3 calle Frame s question - How does g a curve? I.e., what '(s), and B'(s)?	r d it

T'(s)

• We have already covered T'(s)

$$T'(s) = K(s)N(s)$$

• As it is in the direction of N(s) it is orthogonal to B(s) and T(s).

Torsion

• For the parameterized curve $\alpha:I\to \mathbb{R}^3$ the torsion of α is defined by

$$\tau(s) = N'(s) \cdot B(s)$$

• We can then express

$$N'(s) = K(s)T(s) + \tau(s)B(s)$$

Curvature vs	Torsion

H. I. Christensen (UCSD)

• Curvature indicates how much the normal changes in the direction of the tangent

Math for Robotics

- Torsion indicates how much the normal change in the direction orthogonal to the osculating plane
- Curvature is always positive, the torsion can be negative
- Neither depend on the choice of parameterization

Nov 2023

B'(s)

• We know that $B(s) \cdot B(s) = 1$

- From the lemma we know $B'(s) \cdot B(s) = 0$
- We further know: $B(s) \cdot T(s) = 0$ and $B(s) \cdot N(s) = 0$
- From the lemma:

$$B'(s) \cdot T(s) = -B(s) \cdot T'(s) = B(s) \cdot K(s)N(s) = 0$$

• We get

$$B'(s) \cdot N(s) = -B(s) \cdot N'(s) = -\tau(s)$$

and from this we have

$$B'(s) = -\tau(s)N(s)$$

Math for Robotics

The Frenet Formulas

H. I. Christensen (UCSD)

$$T'(s) = K(s)N(s)$$

 $N'(s) = -K(s)T(s)$
 $B'(s) = -\tau(s)N(s)$
 $+\tau(s)B(s)$

In Matrix Form

$$\left(\begin{array}{cccc} | & | & | \\ T'(s) & N'(s) & B'(s) \\ | & | & | \end{array}\right) = \left(\begin{array}{cccc} | & | & | \\ T(s) & N(s) & B(s) \\ | & | & | \end{array}\right) \left(\begin{array}{cccc} 0 & K(s) & 0 \\ K(s) & 0 & -\tau(s) \\ 0 & \tau(s) & 0 \end{array}\right)$$

26 / 41

Nov 2023

Example - Back to the helix

- For: $\alpha(t) = (a\cos(t), a\sin(t), bt)$
- Re-parameterized: $\alpha(s) = (a\cos(s/c), a\sin(s/c), bs/c)$ where $c = \sqrt{a^2 + b^2}$
- Curvature is then: $K(s) = \frac{a}{a^2+b^2}$
- Torsion is then $\tau(s) = \frac{1}{a^2+b^2}$

H. I. Christensen (UCSD)

• Note for this example both curvature and torsion are constants

Covariant Derivatives and Lie Brackets

• Suppose V&W are two vector fields in \mathbb{R}^n so that for each point $p \in \mathbb{R}^n$ V(p) and W(p) are vectors in \mathbb{R}^n

Math for Robotics

• The covariant derivative of W wrt V is

$$(
abla_{v}W)(p)=rac{d}{dt}W(p+tV_{p})|_{t=0}$$

• $\nabla_{v}W$ measures the change in W as one moves along V

Nov 2023

Examples - covariant derivatives

$$W = \frac{(x, y)}{\sqrt{x^2 + y^2}}$$
 and $V = \frac{(-y, x)}{\sqrt{x^2 + y^2}}$

Math for Robotics

• Then
$$abla_v W = rac{v}{\sqrt{x^2+y^2}}$$
 and of course $abla_w V = 0$

A few things about covariant derivatives

- $\nabla_{v}W$ is an n-dimensional vector
- $\nabla_v(aW + bU) = a\nabla_vW + b\nabla_vU$
- $\nabla_{fV+gU}W = f\nabla_v W + g\nabla_u W$

H. I. Christensen (UCSD)

Nov 2023 29 / 41

• The Lie Bracket [V, W] of the two vector fields is defined to be

 $[V,W] = \nabla_V W - \nabla_W V$

- $\bullet\,$ Basically measure flow in the directions of V, -V, W, -W
- Lets illustrate this with a real robot example

H. I. Christensen (UCSD)	Math for Robotics	Nov 2023	31 / 41
Parallel Parking			
	• The configu • The contro • The contro • The contro \dot{x} \dot{y} $\dot{\theta}$ • We can cor $(1, \phi_1)$ and directions	uration - (x, y, θ) Is are (v, ϕ) Is are = $v \cos \phi \cos \theta$ = $v \cos \phi \sin \theta$ = $\frac{v}{I} \sin \phi$ nsider nominal motio $(1, \phi_2)$ as wheel	n

Parallel Parking - Cont

• Two vector fields

$$V_i = V_i(x, y, \theta) = (\cos \phi_i \cos \theta, \cos \phi_i \sin \theta, \frac{\sin \phi_i}{l})$$
• Then

$$\nabla_{V_1} V_2 = (\nabla(\cos \phi_1 \cos \theta) V_2, \nabla(\cos \phi_1 \sin \theta) V_2, \nabla(\frac{\sin \phi_1}{l}) V_2)$$

skipping calculations

$$\nabla_{V_1} V2 = \frac{\sin \phi_1 \cos \phi_2}{I} (-\sin \theta, \cos \theta, 0)$$

and similarly for the

$$[V_1, V_2] = \frac{\sin(\phi_1 - \phi_2)}{I} (-\sin\theta, \cos\theta, 0)$$

So we can move perpendicular to the axis as long as $(\phi_1 - \phi_2) \neq 0$

```
H. I. Christensen (UCSD)
```

Math for Robotics

Nov 2023

33 / 41

Moving to manifolds

Smooth Manifolds

• A manifold is a set M with an associated one-to-one map $\phi : U \to M$ from an open subset $U \subset \mathbb{R}^m$ called a global chart or coordinate system of M

 \rightarrow

Smooth Manifolds

- A smooth manifold is a pair (M, A) where:
 - M is a set
 - \mathcal{A} is a family of 1-1 charts: $\phi: U \to M$ from some open subset $U = U_{\phi} \subset \mathbb{R}^m$ for M

Differentiable and smooth functions

• $f: U \subset \mathbb{R}^n \to \mathbb{R}^q$

H. I. Christensen (UCSD)

 $(y_1,\ldots,y_q)=f(x_1,\ldots,x_n)$

Math for Robotics

• f is of a class C^r if f has continuous partial derivatives

$$\frac{\partial^{r_1+\ldots+r_n}y_k}{\partial x_1^{r_1}\ldots\partial x_n^{r_n}}$$

• If $r = \infty$, then f is **smooth**, the main focus in robotics

36 / 41

Nov 2023

Diffeomorphism

- if f is 1-1, f and f^{-1} are both C^r
- \Rightarrow *f* is a *C*^{*r*}-diffeomorphism
- Smooth diffemorphisms are simply referred as diffeomorphisms
- Inverse Function Theorem:
 - f diffeomorphism $\Rightarrow det(J_x f) \neq 0$
 - $det(J_x f) \neq 0 \Rightarrow f$ is local diffeomorphism in a neighborhood of x

H. I.	Christensen	(UCSD)

Math for Robotics

Nov 2023

37 / 41

Example - Gaussian Distribution

• The space of n-dimensional Gaussian distributions is a smooth manifold

• Global chart: $(\mu, \Sigma) \in \mathbb{R}^n imes \mathcal{P}(n)$

Manifolds can generate multiple charts

The sphere

 $S^2 = \{(x, y, x), x^2 + y^2 + z^2 = 1\}$ has multiple projections/charts

 We can project from the North Pole, of a point P = (x,y,z) given by

$$\phi(P) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$

• is a large coordinate system around the south pole

Summary

- Many more derivations can be provided for movement on manifolds
- Covering basic characteristics of curves and manifolds
- Definition of the Frenet frame and associated characteristics
- Brief coverage of covariant derivatives and Lie bracket

H. I. Christensen (UCSD)

Math for Robotics

Nov 2023